
COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 1 of 54 

COMP 111 Reading Guide: 

Big Java, 3rd Edition 

 

This reading guide is intended to serve several purposes:   

 First, it provides a summary of the readings in each section of the textbook using 
different language and examples from the author.  It is most certainly not, however, 
a substitute for reading the text because few, if any, coding examples or in-depth 
explanations are provided.   

 Second, it indicates which sections of the text are particularly important.  In reality, 
very few sections are unimportant, but some require more careful study.   

 Third and finally, it serves as a quick reference for exam preparation.  However, 
when using it for that purpose, please be aware that it is much easier to recognize the 
correct answers than it is to produce them.  One caveat is that this guide only covers 
the main presentational sections in the textbook.  There are many Advanced Topic, 
Common Error, Productivity Hint and Random Fact sidebars that contain important 
and useful information, and these sections should also be read and studied. 

Chapter 1: Introduction.   

Section 1.1: What is Programming?  Programming is one activity within the larger 
context of Computer Science.  A computer program is a sequence of simple 
instructions that combined can carry out complex tasks very rapidly.  A programmer 
takes the complex tasks and breaks them down into simpler tasks and writes the 
instructions that the computer carries out. 

Section 1.2: The Anatomy of a Computer.  The simple instructions of the program 
are executed on the central processing unit (CPU).  The programs and data are stored 
on disk and loaded into memory in order for the CPU to process them.  
Instructions within each program direct the CPU to read from memory, write to 
disk, display images on the screen, or communicate over the network. 

Section 1.3:  Translating Human-Readable Programs to Machine Code.  Even 
though the CPU only understands simple instructions such as addition, comparisons 
and reading or writing to memory, programs are typically written at a much higher 
level.  Programmers use a language such as Java to describe the tasks, and a 
compiler translates the high level language into machine code.  Java uses a virtual 
machine (the JVM) to interpret the compiled code on a real CPU. 

Section 1.4: The Java Programming Language.  The JVM is itself a program written 
in C and C++ that runs on many different machines and operating systems.  Once a 
JVM is available on a new computing device, then a Java program written on any 
other machine will run on the new device.  After Sun introduced Java in 1995, Java 
applets quickly spread as extensions to browsers.  However, Java’s real potential 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 2 of 54 

wasn’t tapped until it became part of server environments.  As an “industrial” 
language, Java poses two problems for students: it is not simple to write basic 
programs, and the vast libraries are intimidating to approach.  The goal of this 
course is to teach object-oriented principles, not Java specifically. 

Section 1.5: Becoming Familiar with Your Computer.  Integrated development 
environments (IDEs) are software programs used to design, implement, test, and 
debug other programs.  Many different industrial-strength environments exist for 
the Java language, including NetBeans, JBuilder, IntelliJ and Eclipse.  For the 
purposes of this course, we will be using BlueJ – a simplified environment designed 
specifically for teaching object-oriented principles in Java.  In any computing 
environment, having backups of the important work is a good idea as an unexpected 
event can cause the loss of hours, if not weeks, of effort. 

Section 1.6: Compiling a Simple Program.  As mentioned in the previous section, 
Java has a significant amount of overhead to get even a simple program to work.  
Certain words are reserved by the language, and all of the language is sensitive to the 
capitalization of words.  Writing a program so that it is properly formatted with 
indentation and placement of curly braces helps to be able to read it later.  In Java, 
each program is contained in one or more classes.  Within this class, we create 
methods, which define behaviors within a class.  The main method is the point at 
which the program begins execution.  Methods can create objects and invoke other 
methods defined in those classes.  For instance, within the System class there is an 
out object, which contains a println method.  The println method takes a 
single parameter of the string to print to the screen. 

Section 1.7: Errors.  When writing any code, there are two different kinds of errors a 
programmer can encounter: syntax errors and logic errors.  Syntax errors are equivalent 
to grammatical errors in English – the spelling or order of the words is incorrect.  
The compiler will identify lines on which syntax errors occur so that the errors can 
be corrected.  Once the program is grammatically correct, there can still be logic 
errors.  Programming logic errors are like logic errors in English – the sentence or 
paragraph simply does not make sense or convey the message that the author 
intends.  Likewise, it is possible to write programs that are grammatically correct 
that do not do what the programmer wanted but crash or create incorrect output.  
Logic errors can only be found by running the programs and testing their results 
and, therefore, are much more difficult to find. 

Section 1.8: The Compilation Process.  Writing and testing programs in any language 
requires many steps.  Though integrated development environments simplify the 
process, it is essentially unchanged from 30 years ago: use an editor to create a text 
file containing program source code; use a compiler to detect syntax errors and 
translate the source code into binary (machine) executable code; run the resulting 
executable to detect any errors; repeat the cycle to correct any syntax or logic errors 
found. 

Chapter 2: Using Objects.   



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 3 of 54 

Section 2.1: Types and Variables.  Java is both a strongly and statically typed language, 
meaning that all variables in the language have a type, and that type is declared when 
the variable is created.  For instance, a variable created to hold an integer value can 
only ever hold an integer and never a string or floating-point value.  A variable has 
more properties than just type; it also has properties of its name (an identifier), its 
value (the contents it holds in memory), and its scope (the range of lines in the code 
where it is visible). 

Section 2.2: The Assignment Operator.  The assignment operator = is used to associate 
a variable with a value stored in memory.  Before any variable can be used (i.e. 
printed to the screen, used as a value in a formula, etc.), it must be initialized with a 
value through assignment. 

Section 2.3: Objects, Classes, and Methods.  Classes are templates for creating objects 
just as a blueprint is a template for creating a building.  A class defines which instance 
fields (attributes) and methods (behaviors) will be available for each object that is built 
from its template.  An object is an instance of a class just as a particular building is an 
instance of a blueprint.  Many buildings can be created from a single blueprint and 
likewise many objects can be built from a single class.  However, each building is 
unique in its identity and each object is likewise unique.  Just as each building created 
from a particular blueprint has the same general form but varies in its colors, trim, 
and fixtures, each object may have different values for its attributes.  In a like 
manner, methods define behaviors of or actions taken on an object, and are called 
the interface to the object. 

Section 2.4: Method Parameters and Return Values.  Similar to the imperative form 
of English sentences, methods take on the form of “noun.verb(extra_information)”.  
Commanding a dog to fetch a stick in English would be written: “Spot, fetch the 
stick.”  In Java this would be written spot.fetch("stick"); and spot is an 
object of class Dog.  The extra pieces of information needed by a method to carry 
out its actions are the parameters to the method.  Parameters can be any variable, 
expression, constant, or object.  Methods may have a return value as the result of the 
action.  Thus, if the fetch method of the Dog class returns a Boolean value 
indicating whether spot obeyed, we can use that information in further processing. 

Section 2.5: Number Types.  Number types in Java fall into two separate categories: 
integer types and floating-point types.  The two most common types are int and 
double, respectively.  Floating point types can be used to express fractional parts, 
such as 3.1415, whereas integer types correspond to the whole numbers such, as 
42.  Number types are distinct from classes; they are not manipulated by methods 
called on them but rather by operators that combine them.  Though number types 
cannot be used as the target of method calls, they are frequently used as parameters 
to methods and as instance fields within classes. 

Section 2.6: Constructing Objects.  Objects are abstractions of real-world ideas.  For 
instance, an object of class Rectangle represents or describes the concept of a 
rectangle but is not itself a rectangular shape.  Objects are described by their 
instance fields and methods.  For instance, a Rectangle can be described by a 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 4 of 54 

point (x, y) and a width and a height.  However, those are the internal details of 
the object that are typically hidden from programmers using the Rectangle class, 
and the original Rectangle programmer could have used two points (x1, y1) and 
(x2, y2) to describe the object.  To create a Rectangle object, the programmer 
must use the operator new followed by the class name to call the constructor of the 
class.  Constructors are special methods that are responsible for initializing objects 
and typically use the parameters passed into them to perform the initialization. 

Section 2.7: Accessor and Mutator Methods.  As stated previously, objects are 
manipulated through the interface provided by the defined methods.  A method that 
does not change the state of an object (its instance fields) is called an accessor method, 
and a method that does change the data within an object is called a mutator method.  
Frequently programmers follow a naming convention defined by the JavaBeans 
standard in which accessor methods start with the prefix get and mutators start 
with set.  For instance, if a Person object had an instance field name, then the 
getName() method would extract data from the object without changing its state, 
and the setName() method would alter the state of the object by replacing the 
existing name with a new one specified as a parameter.  Not all accessors and 
mutators follow this convention, however, and it is important to consult the 
documentation for the class in order to tell the difference. 

Section 2.8: Implementing a Test Program.  One of the most important tasks facing 
a programmer is assuring himself and others that the code is correct.  One way to 
do that is to write unit tests.  Unit tests are themselves programs whose job it is to 
call other methods and ensure that the actual output matches the predicted output.  
The textbook takes the approach of manual validation by printing out the results of 
the method calls and relying on the programmer to observe when they are incorrect.  
However, a more sophisticated method is to have unit tests perform the comparison 
internally and only print something to the screen when the test fails.  This is the 
approach that JUnit takes.  JUnit is a testing framework into which you place 
methods that will test other methods.  (See the Appendix for specifics about JUnit.)  
Java classes are grouped into packages, and so to test classes from within the JUnit 
framework, it is necessary to use the keyword import followed by the class name 
you wish to use to allow one class access to another. 

Section 2.9: The API Documentation.  In learning any new programming language, 
there are two basic tasks: mastering the language itself and mastering the pre-written 
libraries provided by the language authors.  The Java libraries are vast and actually 
take more time to learn than the constructs of the language.  The application 
programming interface (API) of the Java libraries is described in an extensive collection 
of HTML documents available for browsing over the Internet or downloaded onto 
your computer.  In the API, each class is documented in terms of its intended use, 
the methods provided, and the parameters to each method.  Many entries also 
contain warnings about pitfalls and example code to show how the methods should 
be used.  Browse to the Java API Documentation and drill down to locate classes of 
interest.  



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 5 of 54 

Section 2.10: Object References.  Unlike with primitive types (i.e. built-in types) such as 
numbers and characters, a variable whose type is a class does not actually hold the 
data of the object.  Instead, the variable holds the location of the object that exists 
somewhere else.  Java, like many other programming languages, calls this a reference 
to an object.  A reference is similar to a street address for a building – the address 
uniquely identifies the location of a real world physical object.  In the same way, a 
reference identifies the location of location of a software abstraction of an object.  
Just as two or more letters can be addressed to the same building, two or more 
references can refer to the same object.  Assignment of one reference over top of 
another reference merely copies the location of the object from one to another, and 
thus both refer to the same object.  With primitive types, however, the actual data is 
copied, and so if one primitive is assigned over top of another, then two copies of 
the data exist in the program. 

Chapter 3: Implementing Classes.   

Section 3.1: Levels of Abstraction.  A black box is any device whose inner workings are 
hidden.  To many people a computer is a black box because they have no 
knowledge of how or why it works the way it does.  They know, however, that they 
can type at the keyboard and see results on the monitor, and they can install new 
programs by inserting a CD-ROM.  To an IT specialist, the computer is less of a 
mystery: it contains a hard disk, CD recorder, video card, motherboard, RAM, and 
processor, among other things.  To that same IT specialist, though, the processor is 
itself a black box – but not to an electrical engineer.  A black box provides 
encapsulation, hiding unimportant details from people who don’t need them.  It allows 
a computer user to interact with the computer at one level and a computer repair 
person to interact with it at another level.  In order to achieve this, though, 
somebody needed to abstract out the essential concepts and provide a usable interface 
to the various users.  Consider the API documentation from Section 2.9 – the 
documentation is written to a programmer who uses the component as a black box 
in an application.  The component itself, however, was written by another 
programmer. Thus, the job of a programmer is two fold: write software that uses 
other programmers’ components and write components that others can reuse in 
their software.  Object orientation is the main implementation method today for both 
of these tasks. 

Section 3.2: Specifying the Public Interface of a Class.  The process of abstraction 
allows a programmer to find the essential feature set of an object.  Essential features 
are the methods (behaviors) of the object that will be needed to solve the problem 
the programmer is facing.  Some behaviors will be important for certain kinds of 
problems and other will be irrelevant.  For instance, given a Car object, an 
accelerate() behavior would be important for a racing game but would be 
irrelevant for a vehicle registration system.  Methods consist of five separate pieces 
of code: the access specifier, the return type, the method name, the parameter list, 
and the method body.  The access specifier determines which other classes can invoke 
the method: public means that all classes may invoke it, whereas private means 
that only other methods in the same class can invoke it.  The return type determines 
what kind of data is to be returned, such as a numeric type, another object, or void 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 6 of 54 

if nothing is returned.  The method name should be descriptive of the behavior, and is 
usually a verb or verb phrase.  The parameter list provides zero or more pieces of 
additional data needed to carry out the behavior.  Finally the body of the method is 
the actual program code that implements the behavior.  Constructors are similar to 
methods in that they have an access specifier, parameter list and body.  However, 
constructors are different in that their job is not to define a behavior but rather to 
properly initialize an object for later use.  Constructors are always named the same 
as the class, and constructors never have a return value.  A class is a construct that 
holds all the methods, constructors, and instance fields.  Classes, too, have access 
specifiers, but generally are public. 

Section 3.3: Commenting the Public Interface.  Since part of a programmer’s job is 
to create objects that other programmers can use and reuse, the task of 
documenting how to use the objects becomes extremely important.  Most modern 
languages provide a mechanism where specially formatted comments inserted into the 
program code can be extracted into API documentation.  Comments are notes 
written by the programmer to other programmers (self included) that describe 
aspects of the code.  API documentation describes the purpose and use of the class 
and its methods.  In Java, such JavaDoc comments fall between the /** beginning 
marker and the */ ending marker.  Special tags in the comments denote particular 
fields of interest.  For example, @param describes a parameter and @return 
describes the return value.  Comments that are not destined for API documentation 
describe how or why certain decisions were made.  These comments are intended 
for someone maintaining the class rather than someone who is using the class.  
These comments begin with // and last until the end of the line. 

Section 3.4: Instance Fields.  Instance fields are pieces of data needed to implement 
the behaviors of the methods of a class.  Each object that is created from the class 
blueprint will have a copy of these variables – they aren’t shared between objects.  
However, consider that the principle of encapsulation is concerned only with what 
the object does, not with how it does it.  To expose the way in which something is 
implemented would be to turn the black box into a clear box.  Hiding the details of 
how things work is an important concept in object-oriented programming.  Thus, 
unlike local variable definitions, which have only a type and name, instance fields 
also have an access specifier.  Typically, this specifier should be private, not 
public.  When a private access specifier is used, no code outside this class can 
access the element tagged as such.  However, within the class, all the methods and 
constructors can read and write the private field.  A final note about 
encapsulation is that it is far easier to take a private method or field and make it 
public at a later time than it is to take a public method or field and make it 
private.  Anything that is public can (and likely will) be used by other 
programmers reusing a class, so suddenly changing something from public to 
private will cause their code to no longer compile.  

Section 3.5: Implementing Constructors and Methods.  The last piece of writing 
constructors and methods is the body of code they contain.  The code within each is 
an implementation of an algorithm – a step-by-step procedure for solving a problem.  
This piece is likely the most challenging part of software development.  An 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 7 of 54 

algorithm is similar in some respects to a recipe for cooking in that it defines a 
sequence.  However, unlike a recipe, many algorithms involve conditional and 
repetitive execution (covered in Chapters 6 and 7 respectively).  At this point in the 
course, however, the method bodies will consist of mostly sequential statements 
involving arithmetic and assignment operators.  Finally, if a method should produce 
an answer, a return statement followed by a value that matches the return type is 
used, and that result will be handed back to the caller of the method. 

Section 3.6: Unit Testing.  As mentioned in Section 2.8, testing assures the logical 
quality of the code a programmer writes.  In BlueJ, it is possible to interactively test 
classes by creating an object and then “recording” interactions with it.  The return 
values of method calls can be compared against the predicted values.  When the 
values don’t match, then the JUnit testing framework will show a red bar.  When all 
the return values match what is predicted, then the framework will show a green 
bar. 

Section 3.7: Categories of Variables.  Thus far, three separate categories of variables 
have been discussed: instance fields, local variables, and parameter variables.  (A 
fourth type, static fields, will be discussed in Section 9.7.)   All variables have several 
properties: name, type, value, scope, and lifetime.  Of these, the first three have 
already been covered, but scope and lifetime are the distinguishing factors between 
instance fields, local variables, and parameter variables.  Scope is the range of lines in 
program code where the variables are visible and available to be used in expressions.  
Lifetime is the span of time while the program is executing when the variables exist 
in memory.  The two concepts are linked, yet distinct.  Scope is a concern at the 
time that you are writing the program, and lifetime is a concern as the program is 
running.  The lifetime of objects is determined by how long they are in active use in 
the program.  If a parent object holds a reference to a child object in an instance 
field, then as long as the parent is alive, the child will be as well.  Since there can be 
multiple references to a single object, as long as even one is active, then so is the 
referenced object.  However, when there are no longer any active references to an 
object, then the Java garbage collector is free to reclaim the memory that was occupied 
by the dead object. 

Section 3.8: Implicit and Explicit Method Parameters.  When calling a method on 
an object by the noun.verb(extra_information) metaphor, the explicit 
parameters to the method are the extra information required to carry out the 
behavior.  However, there is yet another parameter that is passed – the implicit 
parameter.  The implicit parameter to every method is the object on which the 
method is invoked (the object on the left-hand side of the dot separating noun from 
verb).  Sometimes it is useful to be able to access the implicit parameter explicitly.  
Within each method, the object on which the method is invoked is known by the 
keyword this.  For example, consider the method call spot.fetch("stick").  
From within the fetch method, this is a reference to the spot object at runtime.  
Many programmers get in the habit of using the this reference when accessing 

other methods or instance fields as it adds clarity to their coding style.  One 
particularly important use of this is when the programmer wants to use one 
constructor to do the initialization for another constructor in the same class. For 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 8 of 54 

example, given a constructor for class Dog that has a signature of public 
Dog(String breed), and you wish to also have a zero-argument constructor 
public Dog() that defaults the breed to Beagles, then inside the zero-argument 

constructor you may have the single line: this(“Beagle”); to call the one-
argument constructor that actually does the initialization. 

Chapter 4: Fundamental Data Types.   

Section 4.1: Number Types.  Number types fall into two categories: integer types and 
floating-point types.  Integer types represent countable quantities and are available 
in various number ranges depending on the size of the variable.  From smallest to 
largest these types are byte, short, int, and long.  The floating-point number 

types allow representation of fractional quantities and also have a range depending 
on size.  The available types are float and double.  By far, int and double are 
the most frequently used.  Be aware that there are difficulties in using number types 
– overflow and rounding errors are common.  Overflow occurs when the result of 
the computation won’t fit back into the same number type, as might occur when 
multiplying two int types together.  Rounding errors occurs because, in the binary 
number system of computers, decimal fractions frequently don’t have a finite non-
repeating representation.  Also, while it may seem that choosing a number type is 
easy, there are pitfalls.  For example, representing money seems to call for a double, 
but in reality, the decimal point in money doesn’t float – it’s fixed and, therefore, 
money would best be represented by an integer.  “Smaller” number types can fit 
into “larger” number types and be implicitly converted.  Thus, it is always possible 
to convert a short to an int.  However, going the other direction may cause an 

overflow and, therefore, requires a cast.  Casting is an explicit conversion, whereas the 
previous example is an implicit conversion.  Non-number types include char, which 
represents character data (including international characters), and boolean, which 
can only hold the two values true and false. 

Section 4.2: Constants.  Though the term “constant variable” may seem to be an 
oxymoron, it is nonetheless possible to define and initialize a variable whose value 
cannot be changed after initialization.  Prefacing the declaration of a variable with 
the keyword final does two things: first it forces the variable to be initialized at 

the point of declaration, and second it prohibits any alterations to this variable in 
later program code.  Typically, named constants like this are used to make program 
code easier to read.  For instance, the Math library has a named constant PI that 
can be used in periodic calculations.  To expose the constant, not only is it final 
but it is also public and static.  The public property allows other classes 
(besides Math) to access the constant, and static means that the variable belongs 

to the class rather than to an instance of the class (an object).  Thus, static variables 
are a kind of “global” data since every object of the class shares them rather than 
having a separate copy in each object as would be the case with instance fields.  
Named constants, by convention, are written in uppercase characters using 
underscores to connect words.  It is important to note that a variable of class type 
(an object) can be made final, meaning that it will only refer to a single instance.  

However, if the object itself defines mutators, then the object can still be altered.  
Hence, only the reference is constant, not the object itself. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 9 of 54 

Section 4.3: Assignment, Increment, and Decrement.  Assignment uses the operator 
= to overwrite a variable in memory with a different value.  Assignment is a 
different operation than the equality comparison operation (covered in Chapter 6), 
and it can look somewhat confusing mathematically to read a statement like i = i 
+ 1.  Rather than being viewed as an equation, this statement is interpreted as “take 
the current value of i, add 1 to it, and make that the new value of i.”  This 
increment operation is so common that special abbreviations of it (the increment 
operators) are available as syntax in Java.  Increment operators have two forms: pre- 
and post-increment.  These operators have both a value and a side effect of 
evaluation.  The side effect of both is the same: the variable is incremented by 1.  
However, the difference is in the value of the expression itself.  Suppose that i has 
the value 3.  Then both ++i (pre-increment) and i++ (post-increment) would 
change i to 4.  However, the expression ++i evaluates to 4 whereas the expression 
i++ evaluates to 3.  The pre-increment operator adopts the new value of i, whereas 
the post-increment operator retains the old value of i.  Just as there are increment 
operators, there are also decrement operators.  For example, --i and i-- are 
legitimate expressions indicating decrementation.  An example in the table below 
should help clarify.  Assume that, for each of these independent expressions, the 
variable i is an int with the value 3 at the outset. 

Expression Final value of x Final value of i 
x = i++ + 5; 8 4 

x = ++i + 5; 9 4 

x = i-- + 5; 8 2 

x = --i + 5; 7 2 

 
When an expression makes multiple changes to a single variable by increment or 
decrement, the side-effects are undefined.  As a result, an expression like (++i - 
i++) has unpredictable results. 

Section 4.4: Arithmetic Operations and Mathematical Functions.  Addition, 
subtraction, multiplication, and division are all defined by built-in mathematical 
operators +, -, *, and / respectively.  Expressions follow the order of operations 
common to algebra in that multiplication and division have higher precedence than 
addition and subtraction.  To change the order of operations, group sub-expressions 
in parentheses.  Note, however, than when dividing integers using the / operator, 
the fractional result is discarded leaving an integer result.  For example 7/4 is 
evaluated to 1.  To include the fractional part of the quotient in the result, either cast 
one of the operands as a double, or, in the case of constants, use 4.0 rather than 

4.  The modulus operator % yields the remainder of integer division.  For example 7 
% 4 (read as “seven mod 4”) is 3, because 7/4 is 1 remainder 3.  The last 
mathematical operator to know is the unary minus (unary operators only have one 
operand as opposed to binary operators, which have two).  Unary minus is also 
known as negation, and would be written as -x, producing the negation of x.  
Other common mathematical operations are programmed as method calls in the 
Math class.  Math.sqrt(x) for instance would calculate the square root of x.  See 
the documentation for the Math class for other methods. 

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html


COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 10 of 54 

Section 4.5: Calling Static Methods.  It may have seemed strange to call methods in 
the Math class by using a class name on the left hand side of the dot operator.  
Normally the left hand side of the dot contains an object name, yet no object of 
class Math was constructed.  The methods defined in the Math class are static 
methods.  Unlike instance methods, static methods are not called on an object and, 
therefore, have no implicit parameter this.  Therefore, static methods must receive 

all their input from explicit parameters.  The Java documentation of library classes 
identifies which methods are static and which are not. 

Section 4.6: Strings.  A String object is an abstraction of text data and can easily be 
thought of as a sequence of characters.  As an object, a String has both attributes 
and behaviors that are related to manipulating text data.  However, since String is 
arguably the most commonly used data type, Java supports special syntax for the 
construction and concatenation of strings.  A string can be constructed by simply 
putting some text in quotation marks.  In addition, strings can be joined to other 
strings, numbers, and even other objects using the + operator.  To do so, merely 
place a String object on the left hand side of the + operator and any other kind of 
data on the right hand side; the resulting object will be a joined String object.  For 
example, “COMP” + 111 would result in the string “COMP111”.  String 
variables and String constants have methods defined for them, but each method 
is an accessor only.  The String class defines no mutator methods and, therefore, 
String objects are called immutable.  For example, “HelloWorld”.length() 
would return the number 9 because there are nine characters in the string.  For any 
String object, many methods exist, such as substring(), charAt(), 
length(), equals(), equalsIgnoreCase(), contains(), indexOf(), 
and many others.  Consult the Java API documentation to explore these commonly 
used methods. 

Section 4.7: Reading Input.  Java was designed from the beginning to use GUI 
interfaces or Web interfaces for its input.  As a result, reading input from the 
keyboard directly into a console-style program has been difficult until Java 5.  
However, using the Scanner class, it is now possible to easily read string and 
number types from the keyboard directly.  To do so, create a Scanner object using 
the constructor, and pass in System.in as the parameter: Scanner in = new 

Scanner(System.in);  Then, use the methods nextInt(), nextDouble(), 
nextLine(), or next() to read in integers, doubles, entire lines as strings, or the 
next word as a string, respectively.  The Scanner class uses the System.in object 
as a source of bytes and then re-interprets those bytes as numbers or strings, 
depending on the method called.  In the language of design patterns, the Scanner 
class is called an Adapter because it changes (adapts) one object interface into 
another more usable or friendlier object interface. 

Chapter 5: Decisions.   

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html


COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 11 of 54 

Section 5.1: The if Statement.  Programs do not execute in straight lines – they need 

to make decisions based on input and choose from a variety of responses decided 
on by the programmer.  For example, a Car object can only drive() if there is gas 
in the tank.  The if statement allows programs to select from a variety of 
alternatives based on the conditions the program checks.  The syntax for an if 
statement is:  

 

condition

statements

true

false

if (condition)

{

    (statements)

}

 

The condition is an expression that returns a true or false (Boolean) value.  

Typically, the condition will use the relational operators for numbers (covered in 
Section 6.2) or predicate methods for String objects.  The statements are the body of 
the if and define any actions that should be executed when the condition is true.  

The curly braces { and } are used to group all the statements into a compound or 
block statement.  If only one statement is to follow the if condition, then no braces 

are required; however, it is a good practice to always include the braces should more 
statements later be inserted in the body of the if statement.  Execution of the if 
statement is illustrated in the above flowchart.  Note that execution splits into two 
alternatives at the condition and then joins again after the body of the if. 

When there is more than one alternative, then the if statement can be combined 
with an else clause to create two mutually exclusive options.  The syntax for the 
if/else construct is:  



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 12 of 54 

condition

statements1 statements2

true false

if (condition)

{

statements1

}

else

{

statements2

}

 

When the condition is true, then statements1 will be executed.  However, when the 
condition is false, then statements2 will be executed.  Again, there are two paths 
through this code, and either statements1 will be executed, or statements2 will be 
executed, but not both.  The flow of control will be restored to one path after one 
of the block statements is executed. 

Section 5.2: Comparing Values.  Relational operators compare two numerical values 
to determine a relationship between them.  The operands are numerical values, and 
the result is a Boolean value (true or false).  Because the operators produce 
Boolean results, such comparisons can be used as the conditions in if statements.  

The operators >, <, >=, <=, !=, and == permit comparison on greater than, less 
than, greater than or equal to, less than or equal to, not equal to, and equal to, 
respectively. 

When comparing floating-point numbers, it is important to consider the 
ramifications of floating-point roundoff errors.  Since it is possible (even probable) 
for two numbers to be very close without being equal, instead of testing for equal, 
test to see if the numbers are “close enough” to be considered equal for the 
purposes of the given situation. 

So far, comparisons have been limited to numerical values.  Strings, however, are 
also usefully compared.  To compare two strings for equality, do not use the == or 
!= operators.  Instead, use the equals() method.  When comparing strings (or 
any other object) using ==, all that are compared are the references.  Two object 
references are only equal if they refer to the same object, not if they simply contain 
the same data.  To compare strings in a case-insensitive manner, use 
equalsIgnoreCase().  Finally, to compare strings on less than, less than or 
equal to, greater than, and greater than or equal to, use the compareTo() method: 
s1.compareTo(s2) compares strings alphabetically, and returns an int that is 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 13 of 54 

either less than 0, equal to 0, or greater than 0 depending on whether s1 is less than 
s2, s1 is equal to s2, or s1 is greater than s2 respectively. 

Objects can also be compared, but the Java language has no knowledge of what 
objects will be written.  Additionally, it is frequently difficult to define a comparison 
between objects.  For example, what does it mean for one Dog object to be “less 
than” another Dog object?  Nonetheless, to compare two Dog objects, the Dog class 
can define its own equals() method and its own compareTo() method that 
follow the same contract as String. 

An object reference that refers to no object is said to have a null value.  Since 
attempting to call a method on a null reference will cause a program to crash, it is 
important to test thoroughly to avoid null references. 

Section 5.3: Multiple Alternatives.  Determining the order of conditions for correct 
execution is difficult since, obviously, not every arrangement will result in the right 
answer.  A sequence of if/else decisions is sometimes necessary to choose 

among many mutually exclusive alternatives.  For example, the following table is a 
schedule of fines for speeding violations: 

1 – 15 MPH 16 – 29 MPH 30+ MPH 

$95.00 $115.00 $155.00 

 
The order of the if/else statements is critical in determining the correct fine.  

For example: 

if (speed >= 1)

    fine = 95;

else if (speed >= 16)

    fine = 115;

else // 30+ miles over

fine = 155;

Not
e: 

Thi
s c

ode

is 
wro

ng!

 

A speeder going 45 miles per hour over the speed limit would be pleasantly 
surprised to only have a $95.00 fine.  The solution is to either reverse the ordering 
or reverse the direction of the comparison. 

if (speed >= 30

      fine = 155;

else if (speed >= 16

      fine = 115;

else // 1 - 15 over

      fine = 95;

if (speed <= 15

      fine = 95;

else if (speed <= 29

      fine = 115;

else // 30 + miles over

      fine = 95;

OR

 

Selecting from a simple list of mutually exclusive options is straightforward.  A 
more complicated problem involves creating nested branches.  These kinds of 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 14 of 54 

problems involve more sophisticated logic and can be both difficult to program and 
to read.  Consider a method that is to determine the smallest of three integers x, y 
and z.  A flow chart for the logic is shown below.  Does the logic work when two or 
more of the numbers are equal? 

x < y

x < z y < z

true false

small = x small = z small = y small = z

true truefalse false

 

The code for this method is easily expressed based on the logic above.  The difficult 
part of programming isn’t writing the code, but rather it is determining the logic that 
solves the problem. 

public static int smallestOfThree(int x, int y, int z)

{

int small;

if (x < y)

if (x < z)

            small = x;

else

            small = z;

else

if (y < z)

            small = y;

else

            small = z;

return small;

}
 

When constructing complex logic it is crucial to know which if the subsequent 
else matches.  The compiler ignores indentation, so formatting your code in an 
effort to pair an if with an else may be deceptive to the reader.  An else clause 
always matches the nearest if.  In order to force it to match a more distant if 

statement, use the compound statement to create a block (enclosed in braces).  
Failing to do so is called the dangling else problem. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 15 of 54 

Section 5.4: Using Boolean Expressions.  As mentioned in Section 4.1, Java has a 
boolean data type.  Boolean variables can only hold the value true or false.  
Further, if a method has a return type of boolean, it is referred to as a predicate 

method.  Frequently these methods are named to begin with a question verb such as 
is or has.  Using just if/else statements and the sequence of statements, it is 

possible to build very complex conditions, but the logic behind them can be difficult 
to ascertain.  Therefore, Java defines three additional operators that combine 
Boolean expressions into more complex, yet easy to read expressions.  These 
operators are &&, || and !; they represent logical conjunction (and), disjunction 
(or), and negation (not).  The operations are defined by the truth tables below: 

X Y X && Y X || Y !X !Y 

false false false false true true 

false True false true true false 

true false false true false true 

true True true true false false 

 
Notice that X && Y is only true when both X and Y are true, and that X || Y 
is only false when both X and Y are false.  As with arithmetic operators, 

Boolean operators follow an order of operations in complex expressions: && is 
always evaluated before || just as multiplication is evaluated before addition.  
Negation always has the highest precedence.  Finally, the order of operations can be 
changed using parentheses. 

Section 5.5: Test Coverage.  Test cases are subdivided into two general categories: 
black-box and white-box.  Black-box tests are written without knowledge of the 
internal workings of the system under test.  White-box tests exploit knowledge of the 
underlying implementation.  As a general rule, unit tests written by the programmers 
are white-box tests.  However, acceptance tests, written by the “customer” or end-user, 
are generally black-box tests.  JUnit supports white-box unit testing, whereas 
FitNess (an acceptance testing framework) is for black-box acceptance testing.  To 
quote the FitNess documentation, JUnit ensures that you “build the code right” 
whereas FitNess ensures that you “build the right code” to solve the problem the 
customer wants.  

Finally, it is important to know the test coverage of the test suite.  Test coverage is a 
measure of how much of the application’s code is actually tested by the test cases.  
There are many ways to measure test coverage: statement coverage ensures that each 
executable statement is executed at least once by tests, decision coverage ensures that 
each conditional expression is evaluated to both true and false by the tests, condition 
coverage ensures that each sub-expression in a Boolean condition evaluates to both 
true and false, and, finally, path coverage ensures that each logical path through a 
function is exercised.  It should always be a goal to get as close to 100% statement 
coverage as possible.   

Logging is a way of tracing the execution of a program through all the method calls.  
More than a useful debugging tool, logging can be a business requirement in many 
situations.  Consider that all bank transactions should be logged for accounting 

http://www.junit.org/
http://fitnesse.org/


COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 16 of 54 

purposes.  However, the most common use for logging is debugging.  The logging 
API allows a programmer to log messages at various levels of severity, capture the 
log to a file, and even turn logging on and off entirely. 

Chapter 6: Iteration.   

Section 6.1: while Loops.  As mentioned in Chapter 1, computers are ideally suited 

for repeatedly performing simple tasks.  Loops allow a computer program to execute 
the same block of code over and over so long as a condition is true.  The 
condition is much like the condition in an if statement, but rather than executing 
the body once, the body continues to execute until the condition becomes false.  
The general syntax and structure for this construct is given below:  

while (condition)

{

statements

}

condition

statements

true

false

 

The while loop is a pre-test loop, meaning that the condition is tested before the 
execution of the code in the body of the loop.  If the condition is initially false, 
then the loop body never executes.  Further, if the condition is always true, then the 
loop will never terminate, resulting in an infinite loop.   



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 17 of 54 

In reality, there are four parts to every loop, but the while loop syntax only makes 

explicit two of the four.   

initialization

body

condition

update

true

false

 

 

The four parts are summarized in the list below. 

 Initialization:  The initialization step sets up (initializes) the variables used in 
the condition to their starting values.  This element is inevitably outside and 
above the loop. 

 Condition: The condition is the Boolean expression that determines how 
many times the loop body executes.  This element is part of the loop and is 
evaluated every time the loop executes (usually at the top).  When the 
condition becomes false due to the update, the loop will terminate. 

 Body: The body of the loop is the block of statements that actually perform 
the work for which the loop was written.  The body can contain all 
statement types including conditionals (if/else), iteration (other while 
loops), and sequences of straight-line code. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 18 of 54 

 Update: The update is a change to the variables in the condition that makes 
progress toward the condition becoming false.  This element is in the loop 

and is usually one of the last statements in the body. 

An error in any of the four elements will lead to particular kinds of loop problems.  
Debugging loops is a difficult task, but the table below summarizes the typical 
errors that may occur. 

Problem Description 

Loop body 
never executes 

If the loop body never executes, it is because the condition 
was initially false.  As a result, the problem usually lies with the 
initialization of the condition variables or with the condition 
itself. 

Loop never 
terminates 

An infinite loop is the result of the condition never becoming 
false.  The problem can exist in three places: the initialization, 
the condition, and/or the update.  If the variables of the 
condition are not initialized properly, then the condition may 
always be true.  Similarly, if the condition is written poorly, it 
may also always be true.  Usually, though, the problem is with 
a bad or missing update step.  If the update is missing, then no 
progress is made toward the condition becoming false, and 
therefore. the loop will never terminate.  Note as well, that it is 
common to put a stray semicolon at the end of the while loop, 
making the loop body (and the update) empty!  Code like this: 
while (i < 10); is almost inevitably wrong. 

Loop 
terminates, but 
the number of 
executions is off 
by one. 

A loop that executes one too many or one too few times is a 
fairly common problem.  The solution is to double check both 
the initialization and the condition.  Initializing a variable to a 
“too large” value could cause the loop to execute one too few 
times.  Similarly, a condition that involves “less than” when 
“less than or equal” is more appropriate will halt early.  
Likewise, a “too small” or a “less than or equal” condition 
when “less than” is correct will cause the loop to execute too 
many times. 

Loop doesn’t 
produce the 
correct answer. 

If the loop is terminating and executing the correct number of 
times, but the result is incorrect, then the problem is likely to 
be found in the body of the loop.  The body is what does the 
work of the calculation, and errors there can’t be diagnosed in 
general terms.  The code is “just wrong” in the body. 

 
Occasionally, an algorithm calls for the body of the loop to be executed before the 
condition is checked.  Such a loop will always execute the body at least once.  This 
kind of loop is known as a post-test loop because the condition is checked at the 
bottom.  In Java, this is known as the do…while loop.  The syntax and flow chart 
are given below.  Though uncommon, a number of algorithms are much simpler 
with such a control structure.  For example, a menu system printed to the screen 
will continue to perform selections until the user opts to exit.  However, the menu 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 19 of 54 

should be printed before getting user input.  Pseudo-code for the algorithm using a 
do…while loop is shown below with the four parts of the loop highlighted. 

int choice;

do

{

   printMenu();

   choice = scanner.nextInt();

   takeSomeAction(choice);

}

while (choice != EXIT);

Body

Initialization and update

Condition.  Note the ;

 

As a general rule, while and do…while loops are used when the loop will 
execute an indeterminate number of times.  When the number of iterations is 
known in advance, however, the for loop is more appropriate and is covered in the 
next section. 

Section 6.2: for Loops.  Semantically, there is no difference between for and while 

loops – everything that can be done with one can also be done with the other.  
However, for loops are perhaps easier to write because all four elements of loops 
(initialization, condition, body, and update) are explicit in the for loop syntax.  The 
most common use of for loops is counting.  A count-up loop initializes an integer 

variable (usually i, j, or k) to zero and continues while the value of the variable is 
less than some constant.  At each step in the loop, the body is executed, and the 
update is to increment the variable.  A count-down loop reverses the process.  The 
syntax is given below:  

for (initialization; condition; update)

{

body

}
 

The above syntax can be easily translated into a while loop: 

initialization

while (condition)

{

body

update

}
 

Note that the update step of a for loop is written at the top but is actually executed 

at the bottom of the loop.  Also note that the semi-colons are part of the syntax of 
the for loop.  Finally, any variable declared in the initialization element of a for 

loop is limited in scope to only the statements in the loop, allowing a programmer 
to reuse common counting variables in loops in the same method. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 20 of 54 

One of the most common idioms in programming languages derived from C (such as 
C++ and Java) is that counting variables always start with zero, and the condition 
always uses less than, but never less than or equal to.  The reason behind the idiom is 
that arrays (covered in Chapter 7) always start their indices at 0 and the last valid 
index in an array of length n is at n-1.    In other words, a programmer would 
number five items using the sequence [0, 1, 2, 3, 4].  Choosing to always start at 0, 
and use less than gets a programmer into the habit of thinking a particular way and 
dramatically reduces the number of “off by one” errors in loop processing. 

Section 6.3: Nested Loops.  Nested loops are loops in which one loop, called the inner 
loop, exists within the body of another loop, called the outer loop.  A single loop is 
good for processing elements along a single dimension – think of counting elements 
on a number line.  However, if you need to process information along multiple 
dimensions (think about rows and columns), then nested loops will be required.  An 
example of such processing is to produce a multiplication table like the one given 
below. 

1 2 3 4 5 

2 4 6 8 10 

3 6 9 12 15 

4 8 12 16 20 

5 10 15 20 25 

 
Pseudo code for this would be similar to the following: 

function printMultTable (numRows, numCols):

   for each row i from 1 to numRows do:

      for each column j from 1 to numCols do:

         print i * j right justified in 4 spaces

      go to the next line
 

The outer loop iterates over each row in the table.  The inner loop handles each 
column within the row.  Sometimes it is easier to take the inner loop and put it in its 
own method.  Then the body of the outer loop calls the method with the 
appropriate parameters, turning a nested loop into two single loops with a method 
call.  Converting the example above would yield the following: 

function printMultTable (numRows, numCols):

   for each row i from 1 to numRows do:

      printOneRow(i, numCols)

      go to the next line

function printOneRow (rowNumber, numCols):

      for each column j from 1 to numCols do:

         print rowNumber * j right justified in 4 spaces
 

Section 6.4: Processing Sentinel Values.  In military terms, a sentinel (or sentry) is a 
soldier standing guard at a point.  In programming, the meaning is much the same: a 
sentinel guards the end of a sequence of data to be processed.  A sentinel value is a 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 21 of 54 

value that will not normally appear in the input stream, but when received as input, 
terminates the algorithm.  Consider a checkout line at a grocery store.  The cashier 
begins to process items on the conveyor, scanning each item and adding up the total 
cost.  How does the cashier know where one person’s items end and another 
person’s begins?  A sentinel divider rod is used to separate one customer’s items 
from another’s items!  The divider bar is a valid “input” on the conveyor but yet 
does not exist for sale in the store, so the cashier knows by its presence that input 
for one customer has ended.  Pseudo-code for the cashier system follows: 

seenSeparator = false

while not seenSeparator and conveyor.hasMoreItems() do:

   item = conveyor.nextItem()

   if item is separatorBar then:

      seenSeparator = true

   else:

      total = total + item.getPrice()

 

Notice that it wasn’t possible to determine whether the loop should continue until 
the middle of the loop.  Another way to accomplish this is to repeat the initialization 
and update code separately as shown below. 

item = conveyor.nextItem()

while item is not separatorBar and

conveyor.hasMoreItems()do:

total = total+item.GetPrice()

item = conveyor.nextItem()
 

Either way, the separator bar represents a sentinel value.  The first solution is a 
“loop and a half” style solution because determining whether or not to continue 
looping occurs halfway through the body of the loop.  The second solution is a 
“prime the pump” style solution because the initialization and update are copied 
both within and above the loop.  Choosing between the approaches is a matter of 
style, not correctness. 

Two final tools to assist with the construction of loops are the break and 
continue statements.  A break statement will immediately terminate the closest 
enclosing loop or switch statement, and control will proceed to the statement 
immediately outside the enclosing context.  A continue statement can only be 
applied to loops and control immediately jumps to the bottom of the loop, where 
control naturally flows back to the top to have the condition tested again.  Both 
break and continue make the control path in a program difficult to follow, so 

judicious use is appropriate. 

Section 6.5: Random Numbers and Simulations.  Simulations are models of real-
world situations in which random numbers are used to simulate the occurrence of 
events related to the situations.  For instance, to determine how many elevators are 
needed in a new skyscraper, a software model based on real-world data can be 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 22 of 54 

constructed.  Elevator speed, weight capacity, floors serviced, and even the servicing 
algorithm are typically pre-determined and can be built into the model.  In the 
model, people would arrive at elevators at random (though probabilistically 
constrained) intervals on various floors and would travel to the lobby or vice versa.  
The simulation could run for 24 virtual hours and could calculate how long the 
average person waits for the elevator.  The simulation could be run again for 
differing speeds and numbers of elevators in an attempt to minimize the wait time.  
The Random class uses a pseudo-random number generator to produce sequences 
of numbers based on parameterized constraints.  

Section 6.6: Using a Debugger.  A debugger is a program that can dynamically inspect 
and display information about another running program.  Most debuggers are built 
into the integrated development environment used to edit, compile, and test 
programs.  Many programmers start debugging their software by using logging or 
print messages that display the contents of variables during execution.  Examining 
these logs shows how the state of the program changes over time and can be 
compared to the programmer’s mental model of what should be happening.  
However, as the software gets more complex, this means of debugging quickly 
becomes intractable – there are too many interactions between objects to print out 
all the object state. 

A debugger, however, allows a programmer to interact directly with a running 
program.  There are three tools common to all debuggers: breakpoints, stepping, 
and inspecting.  A breakpoint is a flag set on a particular line of source code that 
suspends the execution of the program at that line.  Using the debugger interface, a 
programmer can then inspect all the variables that are within scope at the present 
point of execution.  Stepping is then used to see how subsequent lines of code 
affect the state of the objects.  Many debuggers provide several different stepping 
tools, including single stepping (executing the next line), step over (commonly used 
to execute a function in a single step), and step out (completing the current function 
or loop).  Each debugger is different and is usually accompanied by some form of a 
tutorial. 

Section 6.7: A Sample Debugging Session.  The BlueJ debugger is quite simple.  A 
BlueJ supplement provided by the textbook author is available at his web site.  
Another is available at BlueJ.org in the tutorial.  The Debugging How To in the 
textbook is very useful, and should be read closely. 

Chapter 7: Arrays and Array Lists.    

Section 7.1: Arrays.  Up to this point, each program has declared the individual 
variables it has needed in order to carry out its task, but none of these programs has 
needed to manipulate a large collection of data.  Writing a program that tracks 1000 
Employee objects would, until now, require declaring 1000 individual variables, 
likely named employee0000, employee0001, etc.  If one of the desired 
operations was to give every employee a 2.5% cost of living adjustment, the 
programmer would need to write 1000 lines of code similar to 
employee0000.grantRaise(0.025), 

http://www.horstmann.com/bigj/help/bluej/
http://www.bluej.org/tutorial/tutorial-201.pdf


COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 23 of 54 

employee0001.grantRaise(0.025), etc.  What is really needed is a single 
variable that can hold 1000 Employee objects that can be indexed by an integer 
variable.  Then the programmer could write a simple loop such as the following: 

for (int i=0; i<1000; ++i)

{

   allEmployees[i].grantRaise(0.025);

}

 

The loop iterates over each individual element in the collection of employees called 
allEmployees.  For each Employee, it then calls the mutator method 
grantRaise and specifies the percentage.  The variable allEmployees is an 
array – a sequence of values of the same type. 

Arrays are objects, which means that they have a type, and are created using the 
operator new.  The valid indices of an array of length n are 0 through n-1.  Each 

array object has a publicly accessible instance field called length that contains the 
number of elements in the array.  Thus, the 1000 in the above code segment could 
be replaced by allEmployees.length.  Any attempt to access an element 
outside of the bounds [0, length-1] of an array will result in an error – an 
ArrayIndexOutOfBounds exception will be thrown, and the program will halt.  
This is the primary reason that programmers write loops that start at zero and use 
asymmetric bounds, as mentioned in the reading guide notes on Section 6.2. 

Arrays are usually declared and initialized at the same point in code using the 
operator new.  The syntax for array declaration is: 

type [] arrayName = new type[size];
 

For example, the following declares an array of type int and an array of type 
Employee. 

int [] coins = new int [6];

Employee [] allEmployees = new Employee[1000];
  

When creating an array, it is important to note that each of the individual elements 
of the array is initialized to a default value.  In the case of number types, the default 
value is zero; for Booleans, it is false; and for objects, it is null.  In other words, 
creating an array of objects only creates the array, it does not create the objects 
within the array.  The array only holds references to objects, not the objects 
themselves.  For example, to populate the array of employees, code similar to the 
following would need to be written: 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 24 of 54 

Employee allEmployees = new Employee[1000];

for (int i=0; i<allEmployees.length; ++i)

{

   allEmployees [i] = new Employee();

}
 

If there are fewer than 1000 employees in a company, then that number of 
Employee objects could be created, and the first null encountered in the array 

could act as a sentinel value for loop processing. 

Section 7.2: Array Lists.  Arrays are a built-in feature of the Java language.  However, 
arrays have limitations.  For instance, once declared and instantiated, an array will 
neither grow nor shrink.  If a company keeps 1000 employees in an array and then 
hires the 1001st person, the code would need to be recompiled to handle the new 
size.  Further, if the company fires employee 372, then all employees from 373 on to 
the end of the array would need to be “shifted” back one index in the array.  
Because of these limitations, the authors of Java created a library class called 
ArrayList that abstracts common operations on arrays (such as insertion and 
deletion of elements) into a convenient set of methods – and adds the ability to 
grow and shrink dynamically! 

To create an ArrayList object, the program must import 
java.util.ArrayList and use the generics syntax to parameterize the type of 
data that the ArrayList will hold.  The general syntax is: 

ArrayList<containedType> listName = new ArrayList<containedType>();
 

The containedType is whatever object type the list should hold, and listName is the 
name of the variable.  Using the Employee example from the previous section, 
creating a list of Employee would resemble: 

ArrayList<Employee> allEmployees = new ArrayList<Employee>();
 

There are many methods for working with lists, so consult the documentation for a 
complete set.  However, the most important for the present are add(), remove(), 
get(), set(), and size().  Quick recall on these methods and their parameters 
will be a time saver. 

Section 7.3: Wrappers and Auto-Boxing.    ArrayList objects are collections of 
other objects, which means that primitive types (number types, Boolean, and 
character data) cannot be directly stored in an ArrayList.  As a result, Java 
provides wrapper classes for all primitive types.  For the data type int, there exists a 
corresponding wrapper called Integer; for boolean, there is Boolean; for 
char there is Character; and so on.  Wrapper classes merely have a data member 
of the wrapped type, and provide methods for interacting with it.  In general, 
wrappers of any kind are thin veneers over an existing data type that provide a 
slightly different interface. 

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html


COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 25 of 54 

Constructing a wrapper object is relatively simple.  To create an Integer with the 
value 42, construct an object using new and the constructor: 

Integer answer = new Integer(42);

int value = answer.intValue();
 

In Java 5, however, the construction of and access to the wrapped values has been 
simplified by auto-boxing.  Auto-boxing is the automatic construction of wrapper 
objects as needed, and un-boxing is accessing the internal primitive automatically as 
needed.  Thus, in Java 5, the above code could be more easily written as: 

Integer answer = 42;  // constructs an Integer

int value = answer;   // calls intValue
 

Thus, creating an ArrayList of int is simplified, as long as the contained type is 

Integer.  The following example creates an ArrayList of powers of 2. 

ArrayList<Integer> powers = new ArrayList<Integer>();

// note 2 vars declared & updated

for (int i=1, j=0; j<10; ++j, i*=2)

{

    powers.add(i);  // auto-box and store the int

}
 

Section 7.4: The Enhanced for Loop.  Since it is common to create lists and arrays 
and then iterate over those arrays, Java 5 introduced an enhanced for loop.  The 
enhanced for loop is used to traverse all the elements of a collection, be it an array 

or an ArrayList.  The syntax is: 

for (typeName variable : collection)

statement
 

Applied to the Employee example of granting raises, this would resemble: 

for (Employee emp : allEmployees)

{

    emp.grantRaise(0.025);

}
 

This loop would be read in English as “for each employee emp in allEmployees, 
grant emp a raise of 2.5%”.  In each trip through the loop, emp references the next 
element in the allEmployees collection.  The syntax is very convenient, but 
narrowly scoped.  The “for each” loop always starts at the beginning of the 
collection and it always runs until the end of the collection (unless a break 

statement is encountered).  Using this syntax, it is not possible to start somewhere in 
the middle or move backwards through the collection. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 26 of 54 

Section 7.5: Simple Array Algorithms.  As mentioned previously, an algorithm is a 
step-by-step procedure for solving a problem involving selection, iteration, and 
sequences of statements.  Arrays or ArrayList data structures lend themselves 
naturally to a set of simple and common algorithms such as counting elements that 
match a criterion, finding the largest or smallest element, locating the index of a 
matching object, etc.  Each array algorithm usually involves iterating over all 
elements of an array, comparing each element against some criteria, and returning a 
result when a match is located.  Sometimes a match can be found early, but often 
finding a match involves scanning the entire data set (as finding a 
minimum/maximum does). 

Given the Employee example again, the following method in class Company, 
which has an instance field allEmployees, will return a list of employees that 
work for a specified department: 

public ArrayList<Employee>

findEmployeesInDepartment(Department dept)

{

    ArrayList<Employee> result =

new ArrayList<Employee>();

for (Employee emp : this.allEmployees)

    {

if (dept.equals(emp.getDepartment()))

            result.add(emp);

    }

return result;

}
 

Interestingly, to determine how many employees work in a particular department, it 
would only take a single line of (sophisticated) code in class Company: 

int count = findEmployeesInDepartment(

new Department("Accounting")).size();
 

Each algorithm given in this section should be studied in detail.  Chapter 19 covers 
additional algorithms for searching and sorting. 

Section 7.6: Two-Dimensional Arrays.  Not all algorithms can be implemented with a 
single loop; some require nested loops.  Likewise, not all algorithms can be 
implemented with a one-dimensional array, but rather some require arrays with 
more dimensions.  These arrays of arrays are known as multi-dimensional arrays 
because they use more than one index to describe a location.  For example, a one-
dimensional array would be similar to just one row of a spreadsheet.  However, 
many spreadsheet computations involve several rows and columns, which is 
analogous to working with two-dimensional arrays.  Similarly, many spreadsheet 
“books” have sheets as a third dimension.  The number of dimensions can grow 
arbitrarily in computer programs, though it gets somewhat hard to visualize beyond 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 27 of 54 

three (one dimension is a line, two dimensions is a plane, and three dimensions is a 
cube). 

Declaring and creating two-dimensional arrays is similar to the process for one-
dimensional arrays but uses additional brackets: 

type arrayName [][] = new type[size1][size2];
 

One example problem that uses a two-dimensional array is a simple transposition 
encryption program.  A user enters two numbers representing the number of rows 
and columns in a grid of characters.  The user then enters the text to be encoded.  
The text is put into the grid first by row and then by column.  The encrypted text is 
then read out first by column and then by row, effecting a transposition of the 
matrix.  For example, using 5 rows and 8 columns, the phrase “encryption with two 
dimensional arrays” would be entered as: 

E N C R Y P T I 

O N • W I T H • 

T W O • D I M E 

N S I O N A L • 

A R R A Y S • • 

 
The • characters replace spaces.  Reading off by columns yields 
“eotnannwsrc•oirrw•oayidnyptiasthml•i•e••”.  To decrypt, reverse the 
“key” pair from (5, 8) to (8, 5), and run the same algorithm: 

E O T N A 

N N W S R 

C • O I R 

R W • O A 

Y I D N Y 

P T I A S 

T H M L • 

I • E • • 

 
There are many additional points to this algorithm, such as padding the input with 
spaces to make the text length an integer multiple of the area of the matrix, flushing 
the matrix when it fills and then restarting at the upper left with the remaining text, 
etc.  However, the algorithm for placing the character in the matrix and producing 
the result uses (not surprisingly) nested loops: 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 28 of 54 

String plainText =

"encryption with two dimensional arrays";

char matrix [][] = new char[rows][columns];

// **assume** that the text fits neatly

// in the matrix and encrypt

for (int r=0; r<rows; ++r)

{

for (int c=0; c<columns; ++c)

    {

        matrix [r][c] = plainText.charAt(r*columns + c);

    }

}

// now output the encrypted text

String encryptedText = "";

for (int c=0; c<columns; ++c)

{

for (int r=0; r<rows; ++r)

    {

        encryptedText += matrix[r][c];

    }

}

System.out.println("\"" + encryptedText + "\"");
 

This is not a particularly strong encryption algorithm, so please don’t use it to 
encode sensitive information!  However, running the encrypted text through the 
encryption algorithm a second time with a different set of keys makes it substantially 
harder to crack. 

Section 7.7: Copying Arrays.  An array is an object.  Therefore, array variables follow 
object reference semantics, meaning that assigning one array reference over another 
makes both objects refer to the same array.  In other words, assigning array variables 
does not copy the data in the array.  Copying the data in the array requires allocating a 
new array of the same size and iterating over the elements of the array, assigning 
from one into the other.  Here is an example of copying an array of integers: 

int [] source = {1, 2, 3, 4, 5, 6};

int [] dest = new int[source.length];

for (int i=0; i<source.length; ++i)

    dest [i] = source[i];
 

It is also possible to clone the array using a method available to arrays, appropriately 
called clone.  The above code can also be written as: 

int [] source = {1, 2, 3, 4, 5, 6};

int [] dest = source.clone();
 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 29 of 54 

Sometimes, however, rather than copying the entire array, only a section of the array 
should be copied.  Fortunately, copying is so common that the authors of the Java 
class libraries provided a method that programmers can use: 
System.arraycopy(). 

As mentioned previously, an array cannot “grow” to accommodate new elements; 
however, a new array can be allocated that is larger than the original, and the 
elements can be copied from one array to the other.  The original array reference 
can be overwritten with the new array reference, completing the “growth.” 

One final caveat about arrays of objects: each element of the array contains a 
reference.  Copying references means that both arrays point to the same objects in 
memory.  It takes more work to actually copy the objects themselves.  Below is 
some example code, and an object diagram depicting the final state of memory 

// where to copy from

Integer [] source = new Integer [5];

// where to copy to

Integer [] dest = new Integer[source.length];

// set up some initial data

for (int i=0; i<source.length; ++i)

    source [i] = i+1;

// copy the objects

System.arraycopy(source, 0, dest, 0, source.length);
 

source dest

1

2

3

4

5

 

It happens that Integer objects are immutable, so nothing “unexpected” could 
happen.  However, consider that a programmer makes a copy of an array of 
Employee objects and then changes the name of the employee at index 0 of the 
first array.  Since only references are copied, it also changes the name of the 
employee at index 0 of the second array!  The clone() method also works by 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 30 of 54 

copying references.  If a true deep copy (where an entire structure and all its 
substructures are duplicated) is required, then the programmer must write the code 
to clone an entire object graph. 

Section 7.8: Regression Testing.  Test cases, test suites, and testing frameworks are 
not just useful when developing new code; they are also critical when maintaining 
existing code bases.  Most of the software development lifecycle time is spent in 
maintenance – fixing errors and adding features.  Over time, the code base becomes 
more patches than it is the original work, and the initial programming team is no 
longer involved.  As a result, fewer and fewer people understand the complex 
interactions in the code, and bug fixes introduce even more bugs than they fix.  At 
this point, the code has become brittle.  Two practices can help with this problem: 
regression testing and refactoring. 

Regression testing is a practice where old test cases are maintained as part of the code 
base and are re-run after every bug fix to ensure that the repair itself introduced no 
new bugs.  Many programming teams require a failing test cases prior to fixing a bug 
so that there is a way to demonstrate that the bug was actually fixed.  As more bugs 
are fixed, more test cases are generated, all of which can contribute to improved 
code quality.  The second practice to prevent brittle code is refactoring.  Though the 
term is relatively new, the concept is not: refactoring seeks to improve the internal 
design and implementation of code without affecting its externally visible behavior.  
Thus, it is not unusual that a “code cleanup” can proceed on a class or set of related 
classes that improves design and readability, yet to external consumers of the 
classes, no visible change occurs.  To ensure that no behavior visible outside the 
class has changed, a regression test is run.  Thus, the entire system can change, and a 
programmer can be confident that the system still works according to its 
specifications. 

Chapter 14: Sorting and Searching.   

Section 14.1: Selection Sort.   Sorting is the process of ordering elements in a collection 
according to a particular criterion.  An ascending sort sets the criterion such that for 

each element ei of the collection, ei-1  ei  ei+1, where i is the index of the element.  A 

descending sort reverses the order such that ei-1  ei  ei+1.  There are many algorithms 
for sorting, the most common introductory ones being selection sort, insertion sort, 
and bubble sort. 

Selection sort works by dividing the array into two conceptual slices: those elements 
already sorted on the left of index i, and those yet to be sorted starting at i and to 
the right.  Thus, elements [0…i-1] are sorted, and [i, n-1] are unsorted in an array of 
length n.  The algorithm proceeds by finding the smallest element in the unsorted 
section (assume it is at index j), and then swapping the element at i with the element 

at j.  It then increments i, and continues so long as i is less than n - 1 (the length of 
the array less 1).  The code presented below is altered from that shown in the 
textbook to sort a subset of the array between two indices: left and right. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 31 of 54 

public static int [] selSort(int arr[], int left, int right)

{

    // index i separates sorted from unsorted.  At first,

    // nothing is sorted (i=left), but at the end of the

    // algorithm, everything is (i=right)

for (int i=left; i<right; ++i)

    {

        // assume the min element is the first one to start

int min = i;

        // locate the smallest element in the right section

for (int j = i; j < right; ++j)

        {

if (arr[min] > arr[j])

            {

                min = j;

            }

        }

        // swap the min element into the correct position

int temp = arr[min];

        arr[min] = arr[i];

        arr[i] = temp;

    }

return arr;

}
 

The illustration below shows the state of the algorithm as it proceeds through a few 
steps. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 32 of 54 

8 3 6 2 4 7Initial state

After pass 1

After pass 2

After pass 3

2 3 6 8 4 7

2 3 6 8 4 7

2 3 4 8 6 7

i = 0

min = 3

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

i = 1

min = 1

i = 2

min = 4

i = 3

min = 4

After pass 4 2 3 4 6 8 7

0 1 2 3 4 5

i = 4

min = 5

After pass 5 2 3 4 6 7 8

0 1 2 3 4 5

i = 5

min = 5

Search Range

Search Range

Search Range

Search Range

Search Range

 

Insertion sort also works by dividing the array into sorted and unsorted slices similar 
to selection sort.  The main difference is that insertion sort works by choosing the 
next unsorted element and finding where to insert it in the sorted section.  When 
the location is found, it then shifts elements to the right and drops the element into 
place.  More specifically, the algorithm works by selecting the element at index i (the 
first unsorted element) and copying it into a temporary variable.  An index j starts at 

i - 1 and is decremented, comparing the element at j against the temporary copy.  If 
the element at j is greater than the temporary copy, then the element at j is copied to 

location j + 1.  This repeats until the left index is reached, or until an element less 
than or equal to the temporary is found.  This is the site to insert the temporary 
variable into the array.  The code presented below is constructed to match the 
above selection sort and will sort a subset of the array between two indices: left 
and right. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 33 of 54 

public static int [] insSort(int arr[], int left, int right)

{

    // Note, the element at left is already sorted, it's

    // a sub-array of length 1.

for (int i=left+1; i<right; ++i)

    {

        // make a temporary copy of the element to place

int j, temp = arr[i];

        // Locate the position in the sorted slice to place

        // the element.  Keep within the left bound, and stop

        // when a smaller or equal element is found.  Move

        // backwards toward the beginning of the array.

for (j=i-1; j >= left && arr[j] > val; --j)

        {

            // slide each element to the right, opening up

            // a "hole" at index j.

            arr[j+1] = arr[j];

        }

        // located the slot, drop element into position.

        arr[j+1] = temp;

    }

return arr;

}
 

The illustration below shows the state of the algorithm as it proceeds through a few 
steps. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 34 of 54 

8 3 6 2 4 7Initial state
i = 1, j=0

temp = 3

0

After pass 1
i = 2, j=1

temp = 6

After pass 2
i = 3, j=0

temp = 2

After pass 3
i = 4, j=2

temp = 4

1 2 3 4 5

3 8 6 2 4 7

0 1 2 3 4 5

3 6 8 2 4 7

0 1 2 3 4 5

2 3 6 8 4 7

0 1 2 3 4 5

2 4 6 8 7

0 1 2 3 4 5

After pass 4
i = 5, j=4

temp = 7
3

2 4 6 7 8

0 1 2 3 4 5

3After pass 5
i = 6

 

Notice that the two algorithms are complementary.  What one “knows” the other 
“finds” and vice versa.  The comparison table below summarizes this relationship: 

Sort Knows Finds 

Selection The location to 
place the element 

The element to 
place 

Insertion The element to 
place 

The location to 
place the element 

 
Finally, bubble sort also works by dividing the array into sorted and unsorted slices.  
However, in the typical implementation (shown below), the sorted slice is on the 
right, and the unsorted slice is on the left.  There are many implementations of 
bubble sort, each of which adds an optimization, but all operate on the same 
principle: for each pair of adjacent elements in the array from left to right, compare 
the two elements and, if they are out of order, then swap them.  At the end of one 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 35 of 54 

pass through the array, it is guaranteed that one more element will have “bubbled” 
to the right and into its correct position.  Since there are n elements to sort, it will 
take n -1 passes through the array.  The naïve implementation of this algorithm is 
given below: 

public static int[] bblSort1(int[] arr, int left, int right)

{

    // Since we're only guaranteed the correct placement

    // of one element per pass, we need n-1 passes

for (int i=left; i<right-1; ++i)

    {

        //  Look at all the array elements per pass

for (int j=left; j<right-1; ++j)

        {

           // if adjacent elements are out of order, swap them

if (arr[j] > arr[j+1])

           {

int temp = arr[j];

                arr[j] = arr[j+1];

                arr[j+1] = temp;

            }

        }

    }

return arr;

}
 

There is an easy improvement that can be made to this algorithm: don’t look at 
every element in the array in each pass.  Since bubble sort correctly places at least 
one element per pass (moving right to left), the inner loop can stop one element 
earlier with each pass.  That leads to the second implementation below in which the 
changes have been highlighted.  This algorithm is 20% faster than the previous one. 

public static int[] bblSort2(int[] arr, int left, int right)

{

    // Since we're only guaranteed the correct placement

    // of one element per pass, we need n-1 passes

for (int i=left, last=right-1; i<right-1; ++i, --last)

    {

        //  Look at all the unsorted elements per pass

for (int j=left; j<last; ++j)

        {

           // if adjacent elements are out of order, swap them

if (arr[j] > arr[j+1])

           {

int temp = arr[j];

                arr[j] = arr[j+1];

                arr[j+1] = temp;

            }

        }

    }

return arr;

}
 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 36 of 54 

Since bubble sort not only bubbles up the largest elements, but it also tends to 
propagate downward the smallest elements, another improvement is possible: the 

array could become sorted earlier than n - 1 passes.  At the beginning of each pass, 
it can be assumed that this is the last time to traverse the array.  Then, when a swap 
actually takes place, it is known that the array wasn’t really sorted to begin with, so 
another pass is required.  In other words, the new algorithm detects when the array is 

sorted rather than requiring all n - 1 passes, yielding another 17% improvement 
over the second algorithm in cases where the data is already “mostly sorted.” 

public static int[] bblSort3(int arr[], int left, int right)

{

boolean didSwap = true;

int last = right-1;

    // continue as long as a swap happened in the last pass,

    // didSwap is a sentinel

while (didSwap)

    {

        // assume the array is sorted

        didSwap = false;

        //  Look at all the unsorted elements per pass

for (int i=left; i<last; ++i)

        {

            // detect if the array was actually unsorted

if (arr[i] > arr[i+1])

            {

                didSwap = true;

int temp = arr[i];

                arr[i] = arr[i+1];

                arr[i+1] = temp;

            }

        }

        --last;

    }

return arr;

}
 

Using the final optimized algorithm above, the illustration below shows the state of 
the algorithm as it proceeds through a few steps.  Note that there are actually two 
visualizations: the first shows all the swaps in the first pass through the array, and 
the second shows the state after each pass is complete. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 37 of 54 

6 3 8 2 4 7

0 1 2 3 4 5

Initial state i=0

3 6 8 2 4 7

0 1 2 3 4 5

3 6 8 2 4 7

0 1 2 3 4 5

3 6 2 8 4 7

0 1 2 3 4 5

3 6 2 4 8 7

0 1 2 3 4 5

3 6 2 4 7 8

0 1 2 3 4 5

i=1After swap

No swap i=2

i=3

i=4

Final after

pass 1

After swap

After swap

i=5

 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 38 of 54 

6 3 8 2 4 7

0 1 2 3 4 5

3 6 2 4 7 8

0 1 2 3 4 5

3 2 4 6 7 8

0 1 2 3 4 5

2 3 4 6 7 8

0 1 2 3 4 5

2 3 4 6 7 8

0 1 2 3 4 5

Initial state

After pass 1

After pass 2

After pass 3

After pass 4

didSwap=true

last=5

didSwap=true

last=4

didSwap=true

last=3

didSwap=true

last=2

didSwap=false

last=1

 

Notice that, for this data, the bubble sort algorithm ended one pass earlier due to 
the detection of a sorted array. 

Section 14.2: Profiling the Selection Sort Algorithm.   An important aspect of 
studying algorithms is to determine the complexity of a given algorithm. Complexity 
in computer science is usually measured two ways: space complexity and time complexity.  
Space complexity is a measure of the amount of memory an algorithm takes in its 
execution, while time complexity is a measure of the amount of time an algorithm 
takes in its execution.  Often an inverse relationship exists: time can be reduced if 
space is increased, and vice-versa. 

Determining the complexity of an algorithm can be done two ways: mathematical 
analysis (covered in Section 19.3) and profiling.  Profiling is the process of gathering 
runtime statistics about programs, such as execution time, memory usage, and 
method call counts.  In industrial environments, many tools exist for profiling 
programs, but for the purposes of this course, simple timing of method execution is 
reasonable.  Timing and plotting the various sorting algorithms presented yields the 
following data: 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 39 of 54 

 

Elements Bubble Selection Insertion 

1,280  0  0  0  

2,560  31  15  15  

5,120  125  47  31  

10,240  484  219  156  

20,480  1,969  875  563  

40,960  7,829  3,516  2,313  

81,920  31,391  14,047  9,125  

163,840  128,078  58,000  37,375  

Table 1 -- sort time in milliseconds for various array sizes. 

The interesting characteristic of this data is that for each of the sorting algorithms, 
as the number of elements doubles, the sorting time roughly quadruples.  The graph 
of the data below also demonstrates this effect.  Section 19.3 explores this 
phenomenon further. 

Element Count vs. Time for Selected Sorting Algorithms

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000

Element Count

T
im

e
 (

m
s
)

Bubble

Selection

Insertion

 
 

The data used to generate the data table and graph was gathered on a 2.4 GHz 
Pentium 4 with 512 MB memory and running Windows 2000 SP 4.  It is clear from 
the graph that the relationship between the running time and the data size is not 
linear. 

Section 14.3: Analyzing the Performance of the Selection Sort Algorithm.   Noting 
the behavior of the algorithms above naturally leads to the question of why 
doubling the array size quadruples the run time.  To understand the nature of the 
algorithm requires some mathematical analysis.  This understanding of the 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 40 of 54 

mathematics behind the code is what separates a computer scientist from a 
programmer.  Consider this simplified version of insertion sort in which left is 
assumed to be 0, and right is the length of the array (i.e., the whole array is 
sorted): 

 1. public static int [] insSort(int arr[])

 2.  {

 3. for (int i=1; i<arr.length; ++i)

 4.      {

 5. int j, temp = arr[i];

 6. for (j=i-1; j >= 0 && arr[j] > val; --j)

 7.          {

 8.              arr[j+1] = arr[j];

 9.          }

10.          arr[j+1] = temp;

11.      }

12. return arr;

13.  }
 

The “innermost” piece of code is on line 8.  This particular line is executed more 
times than any other in the code segment.  What is the mathematical relationship 
between the number of times that code is executed and the size of the input to the 
method?  To answer, consider the loop beginning at line 6.  When i = 1 this loop 
will execute at most 1 time.  When i = 2 the loop will execute at most 2 times.  

When i = arr.length - 1, the loop will execute at most arr.length - 1 
times.  The sum of all those executions is the number of times that line 8 is 
executed.  If n is the size of the array (i.e., arr.length), then the expression 

)(n)(n... 12321  

defines the number of times that line 8 is executed.  What is a “nice” formula for 
the above sum?  Reverse the sequence, and write it under the original sequence.  
Now, an addition down will show that all terms sum to n as shown below: 

nn...nnn

...)(n)(n)(n

)(n)(n...

12321

12321

 

There are 1)(n the sum above is exactly double of what it should be because the 

series has been added together twice.  So, the final formula for the number of 
executions of line 8 is: 

2

1)n(n
 

Multiplying out the numerator and expressing the result as a function yields the 
following equation: 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 41 of 54 

nnf(n)
2

12

2

1
 

When n gets to be a very large number, 2
n begins to “dominate” the result.  That is, 

dividing by 2 or subtracting out n doesn’t affect the final result very much.  In other 

words, the graph of 2
n will always be larger than the graph of f(n) that f(n) in 

this case is )O(n
2  [pronounced “Big-O of n-squared”].  Any 2

n algorithm 

demonstrates the same properties observed in the profiling of the sort algorithm 
above.  That is, doubling the input size (the number of elements being sorted) will 
quadruple the run time because: 

f(n)

n

n

n)(n)f(

nf(n)

4

2
4

22
2

2
22

2

 

This result is good to know!  Following a progression like this will let a programmer 
predict how long it will take to sort a large data set.  For example, sorting 150,000 
records above took about 2 minutes.  How long would it take to sort 300 million 
records (about the size of the US Social Security database)?  300 million is 2000 

times as large as 150 thousand, so it should take 20002  2 minutes or 8,000,000 
minutes.  That’s roughly 15 years of sorting time!  Clearly, insertion sort is an 
inappropriate algorithm for sorting that quantity of data.  More efficient sorting 
algorithms will be covered in COMP 121. 

Section 14.4: Merge Sort.  Skip this section for this course. 

Section 14.5: Analyzing the Merge Sort Algorithm.  Skip this section for this course. 

Section 14.6: Searching.  In addition to copying, inserting into, removing from, and 
sorting collections of data, the last, and perhaps most commonly used, operation is 
searching.  For arrays, searching amounts to finding the first occurrence of an 
element in an array, and returning its index.  If the element does not exist in the 
array, then a negative number (an impossible index sentinel) is returned.  The 
algorithm (modified from that shown in the textbook to search a subset of the array 
with asymmetrical bounds) for a linear search is given below: 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 42 of 54 

 1. // search a subset of an array between [left, right)

 2. public static int search(int[ ] array, int value,

 2. int left, int right)

 3.  {

 4. for (int i=left; i<right; ++i)

 5.      {

 6. if (array[i] == value)

 7.          {

 8. return i;

 9.          }

10.      }

11. return -1;

12.  }
 

Find the “innermost” statement in order to determine the time complexity.  Clearly 
it is not the return statement in line 8.  That is only executed once because, after 
execution, the function is no longer running.  Actually, the innermost statement is 
the comparison in line 6.  There are three cases to consider: the best-, worst-, and 
average-case execution times.  The best case is when the value is found at the left 
index (the first one examined).  In that case, line 6 is executed once.  The worst case 
is when the value is not found in the array, in which case line 6 is executed (right 

- left), or n, times.  The average case for when an element is found in the array is 
that it will take a search of roughly half the array to find an element, which is 
(right - left)/2 (or n/2) times.  Thus, the algorithm is )(nO  [or linear] in its 

time complexity.  In other words, doubling the size of the array for being searched 
should roughly double the time it takes to do the search using this algorithm. 

Section 14.7: Binary Search.   When an array is sorted, a linear search is not the most 
efficient means of locating an item.  Consider, for instance, the game “High-Low” 
on “The Price is Right.”  In this game, the contestant has a limited amount of time 
to guess the cost of an expensive prize.  For each guess, the host, Bob Barker, 
answers either “higher” or “lower” to tell the contestant that the actual retail price is 
above or below the guess.  The algorithm for guessing a price between some high 
and low bounds is detailed in pseudo-code below: 

function highLowGame(low, high):

    do:

        guess = (high+low)/2

        result = evaluateGuess(guess)

        if result is "higher" then:

            low = guess+1;

        else if result is "lower" then:

            high = guess-1;

    while result is not "correct"
 

Note that this algorithm uses symmetric bounds (i.e., low and high are “included” in 
the range being searched).  However, programmers typically write array algorithms 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 43 of 54 

to use asymmetric bounds, where the left index is included but the right index is 
not. 

Using this algorithm, a search for a brand new 2005 Ford Explorer priced at 
$35,225.00, between $0.00 and $50,000.00, would proceed as follows: 

Low High Guess Result 

0 50,000 25,000 higher 

25,001 50,000 37,500 lower 

25,001 37,499 31,250 higher 

31,251 37,499 34,375 higher 

34,376 37,499 35,937 lower 

34,376 35,936 35,156 higher 

35,157 35,936 35,546 lower 

35,157 35,545 35,351 lower 

35,157 35,350 35,253 lower 

35,157 35,252 35,204 higher 

35,205 35,252 35,228 lower 

35,205 35,227 35,216 higher 

35,217 35,227 35,222 higher 

35,223 35,227 35,225 correct 

 
Fourteen guesses to find the price is significantly better than a linear search that 
would take 35,226 guesses.  The same technique can be applied to sorted arrays as 
well.  The algorithm below implements a binary search on a sorted array.  Note, this 
algorithm is adapted from the one shown in the textbook to search a subset, and the 
right bound is not included. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 44 of 54 

 1. // search a subset of an array between [left, right)

 2. public static int search(int[ ] array, int value,

 3. int left, int right)

 4. {

 5. // the range to search is always [left, right), which

 6. // only contains elements if left and right haven't

 7. // become equal or crossed over one another.

 8. while (left < right)

 9.     {

10. // locate the middle index between left and right

11. int mid = (left + right) / 2;

12.

13. if (array[mid] < value)

14.             left = mid + 1; // in the right half

15. else if (array[mid] > value)

16.             right = mid; // in the left half

17. else

18.             return mid; // found it

19.     }

20.

21. // not found, return "where it would have been"

22. return -(left + 1);

23. }
 

This algorithm also returns where the element “would have been” in the array had it 
been located but makes the result negative to indicate it was not found. 

Find the “innermost” statement in order to determine the time complexity.  Clearly, 
the calculation of the midpoint (line 11) is executed each trip through the loop, so 
determining the relationship between the number of executions of line 11 to the size 

n of the array being searched (which is right - left) will give a rough idea of 
the time complexity.  Consider a sorted array of 16,384 elements.  The first pass 
through the loop will eliminate half of the elements under consideration, leaving 
8172.  The next pass cuts the number of elements to be searched down to 4096, and 
the next to 2048, then 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, and finally 1.  Though 
the search could “hit” the element earlier, an unsuccessful search will always follow 
this pattern, which is the worst case.  How many times can a sequence be divided in 
half?  In other words, considering the current example, what is x in the equation: 

163842x  

To solve for x requires the use of logarithms.  Just as division is the inverse 
operation for multiplication, and subtraction is the inverse operation for addition, 
logarithms are the inverse of powers.  Two useful rules of logarithms are: 

y

x
x

yxy

y

x

log

log
log

loglog

 

Therefore, solving for x in the equation above gives: 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 45 of 54 

log2

log16384

log16384log2

log16384log2

163842

x

x

x

x

 

Evaluating og2log16384/l  yields the result 14 (verify this by using a calculator).  A 

binary search of 16,384 elements will take at most 14 comparisons.  The text shows 
a mathematical derivation of the above result.  Without proof here (the text 
provides proof), binary search is )nO 2(log .  Finally, back to the “High-Low” 

example, searching between $0.00 and $50,000.00 should take at most 
1615.609og2log50000/l  comparisons.  (Note: The notation  indicates the 

“greatest integer” function.) 

Section 14.8:  Sorting Real Data.  Skip this section for this course. 

Chapter 8: Designing Classes. 

Section 8.1: Choosing Classes.  Designing classes correctly is a difficult problem with 
few hard and fast rules.  In fact, great designs are inherently subjective even though 
some metrics – statistics about lines of code, number of objects used, lengths of 
parameter lists, etc. – can be gathered.  Classes typically fall into one of four 
categories: domain classes, actors, utility classes, and library classes.  Each is defined 
below: 

 Domain classes: Domain classes are typically nouns extracted from the 
problem domain (i.e., what you’re trying to solve).  For example, in a payroll 
system, some typical domain objects would be Employee, TimeCard, and 
PayCheck.  Each class represents a single concept in the problem space, 
and the name of the class has meaning to a non-programmer.  Given just 
those names, a non-programmer should be able to list either what those 
objects do or what is done to those objects. 

 Actors: An actor is also an element of the problem domain, but, rather than 
modeling a noun, this kind of class models a verb (usually a process or a 
sequence).  The word actor in this case comes from UML – the unified 
modeling language – in a set of diagrams called “use cases.”  Back in the 
payroll system, example actors could be CheckProcessor, 
FederalTaxCalculator, and CheckPrinter.  Note that these actors 
end with -er or -or suffixes as a general naming convention.  Also note that, 
while these are in the problem domain, they do things to or for the domain 
classes but really don’t have any data that is unique for each object. 

 Utility classes: Utility classes provide reusable services for both domain classes 
and actors and are often able to be used across problem domains.  Utility 
classes are typically populated with static methods, and, therefore, no 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 46 of 54 

instance of them is required.  For example, the Math class contains only 
static methods and constants. 

 Library classes: Library classes are groups of reusable components that are 
used to assemble a program.  For instance, the ArrayList class studied in 
Section 8.2 is a library class in that instances are true objects (i.e., they have 
state, behavior, and identity) useful in many programs.  As mentioned 
before, Java has a vast library of classes that handle wide varieties of tasks 
such as collections of data, network communications, database access, and 
graphical user interfaces.  The API for all classes is provided in the 
documentation.  However, it is common to use additional classes 
downloaded from third parties, such as the Apache Jakarta project, 
Codehaus, OpenSymphony, Hibernate, or Spring framework sites.  Software 
developers also write and use their own libraries as well, and a large part of 
developing good software is to develop a repertoire of home-grown 
libraries. 

Section 8.2: Cohesion and Coupling.  Cohesion is a measure of the degree to which a 
class models a single concept.  The public interface (public methods and constants) 
should all be closely related to the real-world entity being modeled.  High cohesion 
is desirable.  A program that does everything in a single class would not be cohesive, 
but a program that is represented by a set of collaborative objects, each of which 
encapsulates a single concept, would be cohesive.   

Coupling is a measure of the degree to which a class depends on other classes to 
work properly.  A dependency BA (read as “A depends on B”) exists between 
classes A and B if objects of class A use objects of class B as instance fields, 
parameters, or temporary local variables.  In general, the higher the degree of 
coupling a class has, the more difficult the class is to develop, test, and maintain 
because changes to class B affect class A; therefore, low coupling is desirable.  A 
graphical representation of the dependency relationship should be familiar from the 
use of the BlueJ environment, but it is also represented in UML as follows: 

A B

 

Minimizing coupling in object-oriented systems usually requires a design element 
known as interfaces, which is covered in COMP 121 in Section 11.1. 

The BankAccount class developed in the text is certainly minimally coupled (as it 
depends on no other classes) but is not particularly cohesive.  That is, the 
BankAccount class manages two concepts: account operations and money in the 
accounts.  A better design would be to abstract out the money concept into its own 
class, appropriately called Money.  This class could encapsulate internationalization 
(monetary symbols such as $, ¥, £, and €), adding, subtracting, comparing, and 
converting amounts.  BankAccount would then be refactored to use the Money 
class.  However, this change will introduce a dependency in that BankAccount will 

http://jakarta.apache.org/
http://www.codehaus.org/
http://www.opensymphony.com/
http://www.hibernate.org/
http://www.springframework.org/


COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 47 of 54 

now depend on the interface provided by Money.  Thus, the concerns of coupling 
and cohesion are a balancing act.  

Section 8.3: Accessors, Mutators, and Immutable Classes.  Accessors and mutators 
were first mentioned in Section 2.7; however, since they are also a crucial design 
decision in a class, they are repeated here.  Both accessor and mutators are part of 
the public interface.  An accessor provides a way of extracting information from an 
object that has properly encapsulated its data.  A mutator, on the other hand, alters 
the state of the object by changing instance fields.  A class that has no mutators is 
called, appropriately, immutable.  Immutable objects have some very nice properties 
that make them convenient for programmers, as shall be seen in Section 9.4 on side 
effects.  The most common immutable objects are the String class and the 
wrapper classes (Integer, Double, etc.). 

Section 8.4: Side Effects.  A mutator changes the state of an object by altering its 
instance fields, and the author of a class knows which methods are mutators and 
which are accessors.  However, consider that another programmer who uses such a 
mutable object may not be aware of the change.  Calling a mutator method has an 
externally visible change on the object called a side effect. Some side effects are not 
expected, especially when the change happens to a parameter to a method in 
another class.  Consider a BankAccount class that has a collection of 
Transaction objects within it.  A third class, StatementPrinter, contains a 
method as follows: 

 1. public class StatementPrinter

 2. {

 3. private PrintStream out;

 4.     // much code skipped

 5.

 6. public void print(BankAccount account)

 7.     {

 8.         List<Transaction> transactions =

 9. account.getTransactions();

10. for (t : transactions)

11. out.println(t);

12.

13. account.archiveTransactions();

14.     }

15. }
 

The code on line 13 calls a mutator on the BankAccount object, which archives 
and then deletes the transactions for this month.  A programmer calling the print 
method of a StatementPrinter object would suddenly have the BankAccount 
parameter changed.  As a result, the programmer may need to make a defensive copy of 
the BankAccount object prior to calling print.  Side effect bugs are difficult bugs 
to track, and this is what makes immutable objects desirable – they cannot have side 
effects.  The rule of thumb is to minimize side effects to explicit parameters and to 
document all mutator methods. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 48 of 54 

Section 8.5: Preconditions and Postconditions.  Preconditions and postconditions 
form a contract between a method and its caller.  A precondition is any requirement 
about the state of an object or parameters to a method that must be met in order for 
the method to execute properly.  The method should check its preconditions with 
an assertion before executing to prevent silent errors.  A postcondition is a guarantee 
made by the method to its caller about a return value or the final state of an object 
after the execution of the method.  Postconditions are enforced by good testing 
practices. 

For example, consider a transfer method in a BankAccount class that moves 
funds from one account to another.  The guarantee that this method makes is that 
the net amount of money in both accounts does not change and that the money is 
actually transferred.  This guarantee is enforced via testing: 

 1. public void testTransfer()

 2. {

 3. // accounts with 300 and 100 dollars respectively

 4.     BankAccount from = new BankAccount(new Money(300, 0));

 5.     BankAccount to = new BankAccount(new Money(100, 0));

 6.

 7.     from.transfer(new Money(50, 0), to);

 8.

 9. // check results

10.     assertEquals(new Money(250, 0), from.getBalance());

11.     assertEquals(new Money(150, 0), to.getBalance());

12. }
 

Lines 10 and 11 check that the postcondition – money is actually transferred – is 
met.  In a like manner, the method itself should enforce the precondition and 
guarantee that the incoming objects meet its criteria.  In the case of transfer, the 
precondition is that the amount of money to transfer is non-negative. 

 1. public class BankAccount

 2.  {

 3. // code removed

 4. public void transfer(Money amount, BankAccount dest)

 5.      {

 6. assert amount.compareTo(Money.ZERO) > 0;

 7. this.withdraw(amount);

 8.          dest.deposit(amount);

 9.      }

10.  }
 

The assert statement on line 6 checks the precondition that the transferred amount 
is more than zero dollars.  If the condition is not met, then an AssertionError 
is “thrown” (Chapter 15) and processing stops.  Note that it is the responsibility of 
the withdraw method to guarantee that the amount to withdraw does not exceed 
the balance, so it may have multiple assertions. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 49 of 54 

Section 8.6: Static Methods.  Section 4.5 briefly addressed how to call static methods 
by placing the name of the class (rather than an object reference) on the left hand 
side of the dot operator and the name of a method on the right hand side.  
Contrasted to instance methods, in which the implicit parameter this is mapped to 
the object appearing on the left of the dot, static methods have no implicit 
parameter.  Instead of “belonging” to a particular object, static methods belong to 
the class and would be much better named as “class methods.”  As such, they 
cannot access instance fields unless an object of that class is passed in as an explicit 
parameter.  To write a static method, insert the static modifier after the access 

specifier and before the name of the method as demonstrated below: 

public static int min(int x, int y)

{

if (x<y)

return x;

return y;

}
 

When the min method is placed inside a utility class called MyUtilities, it can be 
called using the class name rather than an object name: 

int smallest = MyUtilities.min(a, b);
 

Section 8.7: Static Fields.  Section 4.2 briefly addressed the use of static fields when 
creating constants.  Variable static fields are also used.  However, in this case 
static does not hold the typical definition of “fixed” or “unchanging” as it relates 
to the value of the variable (that is what final means) but rather that the location 
in memory of this single variable is fixed.  That is, all instances of an object “share” 
the static variable – it belongs to the class, not to each instance of the class. 

The textbook presents an example use of static fields to create an automatically 
incrementing account number for bank accounts.  Another common use of static 
fields, though, is a design pattern called Singleton.  A design pattern is a general 
solution to a common problem in object-oriented programming – a problem 
common enough that it is written down, explained in context, and given a name.  
The Singleton pattern is a solution to the common problem of permitting only one 
instance of a class to exist in a software system – in essence, this pattern provides a 
single “global” object.  As an example, consider that, in many business programs, it 
is necessary to log all critical transactions such as deposits and withdrawals in a bank 
account.  Instead of each account having its own application log, there is one master 
log that all accounts use.  Thus, the withdraw method now looks like the 
following: 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 50 of 54 

 1. public void withdraw(Money amount)

 2. {

 3. assert amount.compareTo(Money.ZERO) > 0;

 4. assert this.balance.compareTo(amount) >= 0;

 5.     Logger.getInstance().log("Withdraw " + amount

 6.         + " from " + accountNumber);

 7. this.balance = this.balance.sub(amount);

 8. }
 

Line 5 uses the static method getInstance in the Logger class to extract the 
singleton Logger object and log the operation.  The Logger class is reproduced 
below: 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 51 of 54 

 1. import java.util.List;

 2. import java.util.ArrayList;

 3.

 4. public class Logger

 5. {

 6. private static Logger logger;

 7. private List<String> allMessages;

 8.

 9. private Logger()

10.     {

11.         allMessages = new ArrayList<String>();

12.     }

13.

14. public static Logger getInstance()

15.     {

16.         if (logger == null)

17.         {

18.             logger = new Logger();

19.         }

20. return logger;

21.     }

22.

23. public void log(String message)

24.     {

25.         allMessages.add(message);

26.     }

27.

28. public String toString()

29.     {

30.         StringBuffer buffer = new StringBuffer();

31. for (int i=0; i<allMessages.size(); ++i)

32.         {

33. if (i != 0)

34.                 buffer.append("\n");

35.             buffer.append(allMessages.get(i));

36.         }

37. return buffer.toString();

38.     }

39. }
 

This is far from an industrial strength logger, but it conveys the important parts of 
the Singleton pattern: 

 The constructor on lines 9-12 is private.  This prevents the creation of 

Logger objects from outside the Logger class.  But, how does a Logger 
get created inside the class? 

 A factory method on lines 14-21 enables the creation of a Logger object.  It is 
public, meaning it is accessible outside the class, and it is static, 

meaning that it is able to be called without a Logger instance as the implicit 
parameter. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 52 of 54 

 The factory method uses the static field on line 6.  Since static fields 
belong to the class, not an instance, this is accessible from within a static 

method.  Furthermore, the creation of the logger is delayed until some 
calling method actually requests it.  This technique is called lazy initialization. 

 Through the Singleton logger object all instance fields (line 7) and instance 
methods (lines 23-38) are accessible as well.  Thus, only one log device will 
be used, and it can accumulate all the messages throughout the system. 

Design patterns, simply stated, are the application of object-oriented techniques to 
yield good object-oriented designs.  Patterns have been a hot topic in software 
development for the past several years and continue to evolve as new techniques 
become available.  COMP 121, COMP 311, and COMP 321 will expand greatly on 
these concepts and will introduce many more patterns. 

Section 8.8: Scope.  Scope, which was mentioned briefly in the notes for Section 2.1, is 
the region of a program at compile time in which a variable may be accessed.  A 
local variable is declared within a block (enclosed by braces) in a method, and its 
scope is from the point of declaration until the end of the block.  Two local 
variables with overlapping scope cannot have the same name.  However, two 
variables with disjoint scope may have the same name. 

Instance members (instance fields and instance methods within a class) have a 
different scope than local variables.  The scope of an instance member is all other 
instance methods.  Thus, a given instance field is accessible from within all instance 
methods.  Similarly a given instance method is also accessible from any other 
instance method.  Since all instance methods utilize the implicit parameter this, 

any unqualified member access assumes that the object on which the action is taken 
is this object. 

Static members (static fields and static methods) have a slightly altered scope.  Static 
members are accessible from within instance methods, but, rather than being 
applied to this object, they are applied to the class.  In other words, an unqualified 

static member access uses the current class by default.  From within a static method, 
none of the instance fields or methods is accessible unless an object of that class is 
either created within the method or passed to the method as a parameter.  In either 
case, instance access must be qualified by an object name on the left hand side of 
the dot operator. 

The scopes of local variables and class and instance fields overlap.  When a local 
variable (or parameter) has the same name as a class or instance field, then the local 
variable shadows (hides) the instance or class field.  Using an unqualified variable 
name will always refer to the “closest” variable, which is the local variable or 
parameter.  To access a shadowed class or instance field, qualify the variable by 
using this.variable or ClassName.variable in the case of instance and 
static fields respectively. 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 53 of 54 

Section 8.9: Packages.  As seen in Chapter 9, most well designed object-oriented 
programs are a tight network of collaborating objects built from a large number of 
small, loosely coupled, highly cohesive classes.  The large number of small classes is 
due to the cohesion constraint.  The network of collaborating objects is due to the 
coupling constraint.  A moderately sized enterprise Java program can run to 
thousands of classes and tens of thousands of live objects at runtime.  For instance, 
Tomcat version 5.5.9, a Java-based JSP and Servlet container for hosting web 
applications, has 1256 classes and several other external libraries with many more 
classes within them.  As a result some organizational structure for grouping classes 
is needed.  Packages group classes with similar purposes into a structure that is more 
manageable for programmers. 

Packages correspond to the directory structure of the local storage media.  For 
example, consider a programmer working on a product called “Alacrity” for a 
company called Mærlion Systems.  Alacrity has a set of classes that store data into a 
database.  The programmer, therefore, organizes the database classes into a package 
called com.maerlionsystems.alacrity.persistence.manager.  If all 
the source code is placed under a base directory c:\source, then all classes in the 
package would be placed into 
c:\source\com\maerlionsystems\alacrity\persistence\manager.  
Note that the package name is the reversed Internet address to avoid potential 
clashes with other packages, but that is not a requirement.  However, no package 
can begin with java or javax since those are reserved by Sun for the Java 
language.  To create a class JDBCPersistenceManager within the given 
package, put the class in the named directory, and start the file 
JDBCPersistenceManager.java with the following declaration: 

package com.maerlionsystems.alacrity.persistence.manager;

public class JDBCPersistenceManager

{

// code for class goes here

}
 

Classes in the same package have direct access to other classes in the same package.  
However, when using classes from a different package, it is necessary to import 
them, or use the fully qualified class name when referencing the class.  For example 
the following class in a different package imports and uses the 
JDBCPersistenceManager above: 

package com.maerlionsystems.alacrity.persistence.dao;

import com.maerlionsystems.alacrity.persistence.manager.*;

public class InvoiceDao

{

private JDBCPersistenceManager manager;

// code for class goes here

}
 



COMP 111 Reading Guide 

Copyright © 2005 Franklin University  Page 54 of 54 

In the example above, every class in the 
com.maerlionsystems.alacrity.persistence.manager package is 
imported (becomes within scope) into the current class by the use of the * wildcard.  
However, it is more common to import a single class at a time, such as import 

java.util.List.   

Packages also resolve naming conflicts between classes.  Two classes can have the 
same name as long as they are in separate packages.  Either one or the other can 
then be imported.  In the unlikely event that both classes with identical names need 
to be imported, the declaration and constructor calls can be fully qualified with the 
package name: 

java.util.List<String> list = new java.util.ArrayList<String>();
 


