COMP 111 - Week 11 Learning Activities Solution
Activity 11-1

Outcome: Compare, contrast, and demonstrate the execution of algorithms for selection, insertion, and bubble sorts.

After spending much time in the garden watching the numerous servants work, Alice asked the queen, “There are so many of them I can scarcely sum them all up, how do you keep them all sorted?”

Giving a soft laugh at the girl’s naivety, the queen replied, “Dear girl, you must learn a great deal if you ever wish to be a queen! It is very important to sort your own servants and to do that you have to know a sorting algorithm.”

“A sorting algorithm?” inquired Alice.

“Yes, such as selection, insertion, and bubble sort.” Standing up, the queen pointed at a collection of workers and summoned them closer. “Pay close attention, for I shall only speak to each once.”

A set of the cards shuffled over and stood at attention in a line in front of them both.

The queen then began with her explanation. “In selection sort you look through and select the next worker and put him in place, so we start out by looking to put a worker into the first place:”

“We can see that his value is 6. We need to keep looking to see if someone else should go there.”

“Look at the next one, it is a 2. Since 2 < 6, this is our new smallest value. But we need to keep looking to make sure nobody else is smaller.”

Alice then commented, “Nobody else is smaller than the 2!”

“Yes, my dear, and since we know the 2 is the smallest, we switch the 2 to the place we wish to place it.”

“But we are not done yet; we must find whom to put in the next spot!”

“Which is basically doing the same thing over,” said the queen.

“And another pass of course!” smiled the queen.

“Now, they’re all sorted!” said Alice happily.

“They may be, but we have to be careful,” warned the queen. “What if the 6 had really been a 9 all this time? Then they wouldn’t be, so we should keep going.”

“Because the 6 is already in the correct place, we don’t need to switch anything, and since there is only a single card left after that, he must already be in the proper position!”

Alice nodded and understood, thinking that sorting was not bad at all.

“Now, insertion sort . . .” The queen clapped her hands, and the cards shuffled themselves back to the positions they were in when they started.

“We shall assume the first card is sorted and the rest are not. We then take each card and move it back into the proper position as follows.”

“See? And we repeat this process on each pass.”

“That pass was pretty simple, but take a look at the next one!”

“And then we just have one pass left to do:’

“I kind of like that one better than selection sort myself,” intoned the queen, “but bubble sort is my favorite.”

Once again the queen clapped her hands, and the cards moved around to start anew.

“We start by assuming nothing is sorted and do some comparing, of course. Starting always at the left we work our way toward the right comparing pairs.”

“Look closely,” started the queen. “Notice how the largest value seemed to ‘bubble’ down to the right?”

Alice quickly agreed, having watched the 8 move almost the whole way.

“On each pass, we push the largest value over to the right and ensure that one more value is sorted. Here we go again!”

“But, even though it may be sorted we need to keep going!” Alice nodded and kept watching.

“And since there is only one left and the rest is sorted, we know they are all sorted,” Alice giggled happily. She was so happy to understand sorting that she wanted to give the queen a hug, but as that would not be proper, she curtseyed instead.

1. Demonstrate each of the sorting methods on the following set of numbers: { 89, 12, -5, 68, 42, 12, 0 }.

 Selection sort
89 12 05 68 42 12 00

00 12 05 68 42 12 89

00 05 12 68 42 12 89

00 05 12 68 42 12 89

00 05 12 12 42 68 89

00 05 12 12 42 68 89

00 05 12 12 42 68 89

00 05 12 12 42 68 89

Insertion sort
89 12 05 68 42 12 00

89 12 05 68 42 12 00

12 89 05 68 42 12 00

05 12 89 68 42 12 00

05 12 68 89 42 12 00

05 12 42 68 89 12 00

05 12 12 42 68 89 00

00 05 12 12 42 68 89

Bubble sort

89 12 05 68 42 12 00

12 89 05 68 42 12 00

12 05 89 68 42 12 00

12 05 68 89 42 12 00

12 05 68 42 89 12 00

12 05 68 42 12 89 00

12 05 68 42 12 00 89

05 12 68 42 12 00 89

05 12 42 68 12 00 89

05 12 42 12 68 00 89

05 12 42 12 00 68 89

05 12 12 42 00 68 89

05 12 12 00 42 68 89

05 12 00 12 42 68 89

05 00 12 12 42 68 89

00 05 12 12 42 68 89

Activity 11-2

Outcome: Analyze the performance of selection, insertion, and bubble sorts using profile data and primitive operation counts.

From the COMP111/Activities/Week11 directory, open the project “SortTiming.” In this exercise, you will be writing the code for the StatisticsGatherer class so that it times the execution of bubble, insertion, and selection sorts for various sized arrays. You should also gather the number of primitive operations that each algorithm has performed. You are then to plot the data (array length vs. execution time and array length vs. operation count) in a spreadsheet to produce a graph that looks similar to that given in the key points, section 11.1.2.
Points to consider:

· You should use the same array to time all three algorithms for a given length. This prevents one set of data from being “better” for a given algorithm than another.

· The ArrayUtilities class contains methods that will create a random array of integers for you.
· The SortTimer class contains a method that will time the sorting of an array given the sorting object and an array. It can also run the sort multiple times in case the run times are so fast that it registers zero milliseconds.

· Create BubbleSorter, InsertionSorter, and SelectionSorter objects to pass into the SortTimer class to be timed.

· All the sorting algorithms are “instrumented” so that the primitive operation counts are gathered.
· If you run the sorts multiple times, the overall time and operation count should be divided by the number of times run.

Answer the following questions:

1. Does your graph look like that in the key points section 11.1.2? If it does not, why do you think there is a discrepancy?
2. What is the rough shape of that graph (i.e., logarithmic, linear, parabolic, cubic, etc.)?
3. What happens to the run times as the size of the array doubles?

4. What happens to the operation counts as the size of the array doubles?

Here is one approach for coding the StatisticsGatherer class. Cconsider/implement ways to improve upon this per the "Points to consider" section.

public class StatisticsGatherer

{

 public StatisticsGatherer()

 {

 }

 public static void main()

 {

 int [] originalData;

 long elapsed = 0;

 SortTimer timer;

 // Bubble sort data

 timer = new SortTimer();

 BubbleSorter bs = new BubbleSorter();

 System.out.println("Bubble sort statistics: ");

 for (int i = 10000; i <= 80000; i += 10000)

 {

 originalData = ArrayUtilities.createRandomIntArray(i);

 elapsed = timer.timeSort(bs, originalData, 1);

 System.out.println(i + "\t" + elapsed);

 }

 // Selection sort data

 timer = new SortTimer();

 SelectionSorter ss = new SelectionSorter();

 System.out.println("Selection sort statistics: ");

 for (int i = 10000; i <= 80000; i += 10000)

 {

 originalData = ArrayUtilities.createRandomIntArray(i);

 elapsed = timer.timeSort(ss, originalData, 1);

 System.out.println(i + "\t" + elapsed);

 }

 // Insertion sort data

 timer = new SortTimer();

 InsertionSorter is = new InsertionSorter();

 System.out.println("Insertion sort statistics: ");

 for (int i = 10000; i <= 80000; i += 10000)

 {

 originalData = ArrayUtilities.createRandomIntArray(i);

 elapsed = timer.timeSort(is, originalData, 1);

 System.out.println(i + "\t" + elapsed);

 }

 }

}
Output:

Bubble sort statistics:

10000
516

20000
2469

30000
6938

40000
15360

50000
27673

60000
45532

70000
69516

80000
100797
Selection sort statistics:

10000
250

20000
1969

30000
3985

40000
10891

50000
22516

60000
38938

70000
50906

80000
65812
Insertion sort statistics:

10000
156

20000
1343

30000
2702

40000
7437

50000
14906

60000
20359

70000
27703

80000
37375

Activity 11-3

Outcome: Compare, contrast, and demonstrate the execution of the algorithms for linear and binary search.

1. Show how to do linear and binary search on the following sets of numbers. If you cannot do a search give the reason why:

Search for 23 in the list: { 11, 28, 31, 33, 36, 50, 71, 98, 106}

Linear search

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106
Since list is ordered, there is no need to search further

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106
11 28 31 33 36 50 71 98 106
11 28 31 33 36 50 71 98 106
11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

Not found

Search for 50 in the list: { 11, 28, 31, 33, 36, 50, 71, 98, 106}

Linear search

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

Found

Binary search

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106
11 28 31 33 36 50 71 98 106

11 28 31 33 36 50 71 98 106
11 28 31 33 36 50 71 98 106
Found

Search for 31 in the list: { 28, 11, 31, 33, 36, 50, 71, 98, 106}

Linear search

28 11 31 33 36 50 71 98 106

28 11 31 33 36 50 71 98 106

28 11 31 33 36 50 71 98 106

Found

Binary search

28 11 31 33 36 50 71 98 106

Unable to use

Binary seatch – list is not sorted

Activity 11-4

Outcome: Analyze the performance of linear and binary search using profile data and primitive operation counts.

From the COMP111/Activities/Week11 directory, open the project “SearchTiming.” In this exercise, you will be writing the code for the StatisticsGatherer class so that it times the execution of linear and binary search for various sized arrays. You should also gather the number of primitive operations that each algorithm has performed. You are then to plot the data (array length vs. execution time and array length vs. operation count) in a spreadsheet to produce a graph. Create separate graphs for successful and unsuccessful searches (Hint, examine the test cases to determine which data is or is not in the array).

Points to consider:

· You should use the same sized array to time both for a given length. But, recall that data for a linear search can be random, whereas data for the binary search must be sorted.

· The ArrayUtilities class contains methods that will create random and sorted arrays of integers for you.

· The SearchTimer class contains a method that will time the sorting of an array given the sorting object and an array. It can also run the sort multiple times in case the run times are so fast that it registers zero milliseconds (highly likely).

· Create LinearSearcher and BinarySearcher objects to pass into the SearchTimer class to be timed.

· All the searching algorithms are “instrumented” so that the primitive operation counts are gathered.

· If you run the searches multiple times, the overall time and operation count will be multiplied by the number of times run, so be sure to divide it out by the run count in your spreadsheet.
Answer the following questions:

1. How do the two algorithms compare graphically? Are there any outlier data points? If so, why do you think that is?
2. What is the rough shape of each graph (i.e., logarithmic, linear, parabolic, cubic, etc.)?

3. What happens to the run times as the size of the array doubles?

4. What happens to the operation counts as the size of the array doubles?
Here is one approach for coding the StatisticsGatherer class. Cconsider/implement ways to improve upon this per the "Points to consider" section.

import java.util.Random;

public class StatisticsGatherer

{

 public StatisticsGatherer()

 {

 }

 public static void main()

 {

 int [] originalData;

 long elapsed = 0;

 SearchTimer timer;

 Random rand = new Random();

 int target = 0;

 // Linear search

 timer = new SearchTimer();

 LinearSearcher ls = new LinearSearcher();

 System.out.println("Linear search statistics: ");

 for (int i = 100000; i <= 800000; i += 100000)

 {

 target = rand.nextInt(i);

 originalData = ArrayUtilities.createSortedIntArray(i);

 elapsed = timer.timeSearch(ls, originalData, target, 1000);

 System.out.println(i + "\t" + elapsed/1000.0);

 }

 // Binary search

 timer = new SearchTimer();

 BinarySearcher bs = new BinarySearcher();

 System.out.println("Binary search statistics: ");

 for (int i = 10000; i <= 800000; i += 100000)

 {

 target = rand.nextInt(i);

 originalData = ArrayUtilities.createSortedIntArray(i);

 elapsed = timer.timeSearch(bs, originalData, target, 1000);

 System.out.println(i + "\t" + elapsed/1000.0);

 }

 }

}

Output:

Linear search statistics:

100000
0.453

200000
1.359

300000
2.718

400000
4.53

500000
6.796

600000
9.484

700000
12.625

800000
16.234

Binary search statistics:

100000
0.0

200000
0.0

300000
0.0

400000
0.0

500000
0.015

600000
0.015

700000
0.015

800000
0.015

Here is another approach that creates an array where the target is known:

public class StatisticsGatherer

{

 public StatisticsGatherer()

 {

 }

 public static void main()

 {

 final int aryLen = 10000000;

 int [] originalData = new int [aryLen];

 long elapsed = 0;

 SearchTimer timer;

 int target = 8888888;

 // populate array

 for (int i = 0; i < aryLen; ++i)

 {

 originalData[i] = i + 1;

 }

 // Linear search

 timer = new SearchTimer();

 LinearSearcher ls = new LinearSearcher();

 System.out.println("Linear search statistics: ");

 elapsed = timer.timeSearch(ls, originalData, target, 100);

 System.out.println(aryLen + "\t" + elapsed/100.0);

 // Binary search

 timer = new SearchTimer();

 BinarySearcher bs = new BinarySearcher();

 System.out.println("Binary search statistics: ");

 elapsed = timer.timeSearch(bs, originalData, target, 100);

 System.out.println(aryLen + "\t" + elapsed/100.0);

 }

}

Output:

Linear search statistics:

10000000
40.47

Binary search statistics:

10000000
0.0

5

(

3

(

8

(

2

(

6

(

5

(

3

(

8

(

2

(

6

(

Smallest one found so far = 6.

Looking to put someone here.

2 is smaller than 6, so this is smallest so far.

5

(

3

(

8

(

2

(

6

(

Looking to put someone here.

5 is not smaller than 2, so 2 is still smallest.

Looking to put someone here.

5

(

3

(

8

(

2

(

6

(

Looking to put someone here.

5

(

3

(

8

(

2

(

6

(

3 is not smaller than 2, so 2 is still smallest.

5

(

3

(

8

(

2

(

6

(

8 is not smaller than 2, so 2 is still smallest.

Looking to put someone here.

6

(

Looking to put someone here.

5

(

3

(

8

(

2

(

2 is smallest, so we swap the two cards.

The 6 gets put here.

5

(

3

(

8

(

6

(

2

(

The 2 is now in the correct position.

5

(

3

(

8

(

6

(

2

(

We start with 6 as the new smallest since we know the 2 is in the correct place already.

Looking to put someone here.

8

(

6

(

2

(

5

(

3

(

8 is not smaller than 6, so 6 is still smallest.

Looking to put someone here.

8

(

6

(

2

(

3 is smaller than 6, so it is the new smallest value.

Looking to put someone here.

5

(

3

(

5

(

3

(

8

(

6

(

2

(

5 is not smaller than 3, so 3 is still smallest.

Looking to put someone here.

The 6 goes here where the 3 was.

The 3 is now in the correct position.

5

(

6

(

8

(

3

(

2

(

5

(

Looking to put someone here.

We start off with 8 as our smallest value.

6

(

8

(

3

(

2

(

2

(

6 is smaller than 8, so that is our new minimum.

Looking to put someone here.

5

(

6

(

8

(

3

(

5

(

6

(

8

(

3

(

2

(

5 is smaller than 6, so that is our new minimum.

Looking to put someone here.

5

(

3

(

2

(

8 goes here where the 5 was.

5 is now in the correct position.

8

(

6

(

Looking to put someone here.

Start with 6 as the minimum.

8

(

6

(

5

(

3

(

2

(

Looking to put someone here.

8

(

6

(

5

(

3

(

2

(

8 is not smaller than 6, so 6 is still minimum.

5

(

3

(

8

(

2

(

6

(

Everything over here is assumed to be unsorted.

Everything over here is sorted.

Check to see if these two are in order.

5

(

3

(

8

(

2

(

6

(

They are not, so we swap them. Nothing left to compare with, done.

Everything over here is assumed to be unsorted.

5

(

3

(

8

(

6

(

2

(

Since the 6 and 8 are already in order, we are done.

5

(

3

(

8

(

6

(

2

(

5

(

3

(

8

(

6

(

2

(

Not in correct order, need to swap them.

6

(

2

(

5

(

8

(

3

(

Not in correct order, need to swap them.

3

(

2

(

5

(

8

(

6

(

Pass is done since these two are in order.

3

(

2

(

5

(

8

(

6

(

Not in correct order, need to swap them.

2

(

8

(

5

(

6

(

3

(

Not in correct order, need to swap them.

6

(

5

(

3

(

2

(

8

(

In order.

Everything over here is assumed to be unsorted

Everything over here is sorted

5

(

3

(

8

(

2

(

6

(

Compare these two and put them in order

Everything over here is sorted

5

(

3

(

8

(

2

(

6

(

8

(

6

(

2

(

They were not in order, so we swap them.

Everything over here is sorted

5

(

3

(

Everything over here is sorted

5

(

3

(

8

(

6

(

2

(

These two are already in order.

5

(

Will need to be swapped

3

(

8

(

6

(

2

(

Everything over here is sorted

6

(

2

(

Everything over here is sorted

5

(

8

(

3

(

Will need to be swapped.

2

(

Everything over here is sorted

8

(

5

(

3

(

6

(

6

(

2

(

8

(

5

(

3

(

Everything over here is sorted

No need to swap these two.

6

(

2

(

Everything over here is sorted

8

(

5

(

3

(

Need to swap these

5

(

6

(

3

(

2

(

Everything over here is sorted

8

(

Will need to swap these as well.

5

(

3

(

2

(

8

(

6

(

Everything over here is sorted

8

(

6

(

5

(

3

(

2

(

Compare these two

Everything over here is sorted

Everything over here is sorted

8

(

6

(

5

(

3

(

2

(

Compare these two

Everything over here is sorted

8

(

6

(

5

(

3

(

2

(

6

(

5

(

3

(

2

(

Compare these two

Everything over here is sorted

8

(

8

(

6

(

5

(

3

(

2

(

Everything over here is sorted

PAGE
19
Week 11 Learning Activities

