COMP 111 - Week 13 Learning Activities Solution
Activity 13-1
Outcome: Specify the pre- and post-conditions for a method.

1. Write pre- and post-conditions for: public static double sqrt(double x)
Pre:
assertTrue(x >= 0)
Post:
assertTrue(Math.sqrt(x) >= 0)

2. Write pre- and post-conditions for: public static String romanNumeral(int n)
Pre:
assertTrue(n > 0);

Post:
String result = romanNumeral(n)

assertTrue (result.contains("I") ||

result.contains("V") ||

result.contains("X") ||

result.contains("L") ||

result.contains("C") ||

result.contains("D") ||

result.contains("M"))

3. Write pre- and post-conditions for: public static String weekday(int day)
Pre:
assertTrue(day > 0 && day < 8)

Post:

String temp = weekday(int)

assertTrue (temp.equalsIgnoreCase("sunday") ||

temp.equalsIgnoreCase("monday") ||

temp.equalsIgnoreCase("tuesday") ||

temp.equalsIgnoreCase("wednesday") ||

temp.equalsIgnoreCase("thursday") ||

temp.equalsIgnoreCase("friday") ||

temp.equalsIgnoreCase("saturday"))
4. Consider a CashRegister class with methods public void enterPayment(int coinAmount, Coin coinType) and public double getTotalPayment(). Give a reasonable post-condition of the enterPayment method. What preconditions would you need so that the CashRegister class can ensure that post-condition?
enterPayment pre:

assertTrue(coinAmount > 0);
assertNotNull(coinType);

Assuming that a Coin object has only one coin and there is a getCoin() method that returns a coin name:

assertTrue(coinType.getCoin().equalsIgnoreCase("penny") ||

coinType.getCoin().equalsIgnoreCase("nickle") ||

coinType.getCoin().equalsIgnoreCase("dime") ||

coinType.getCoin().equalsIgnoreCase("quarter"))

Also, is coinAmount compatible with coinType? This would not seem to be a good design, coinType would be sufficient if it has an associated amount i.e. via constants in the class.

getTotalPayment post:

assertTrue(payment > 0);

Activity 13-2

Outcome: Differentiate between the uses of static and non-static fields and methods in a class.

So far, all the methods you have been writing (except for main) have been instance methods. You could only use instance methods on an instance of a class. Many of you have probably been wondering why main has that “static” keyword. When your program starts, there are no objects, so how could you call an instance method? What happens when you need a method that is not invoked on an object? A typical example of a static method is the sqrt method in the Math class. When you call Math.sqrt(x), you don’t supply any implicit parameter.

When calling the name of a static method, you supply the name of the class containing the method so that the compiler can find it. Suppose David turns in his homework assignment, a program that simulates playing poker. His solution consists of a single class with many static methods. Why is this not an object-oriented solution?
Besides static methods, you can have static fields as well. The implication of this is that, since the method does not belong to any particular instance of the class, there must be only one of them for all instances of the class.

1. Consider the following example:

public class Foo

{

 public static int x;

 public int y;

}

Foo f = new Foo();

Foo g = new Foo();

f.x = 5;

f.y = 2;

g.x = 1;

g.y = 7;

What are the values of x and y in each instance of Foo?

After above:

f.x = 1

f.y = 2

g.x = 1

g.y = 7

Foo.x = 8;

f.x = 8
f.y = 2
g.x = 8
g.y = 7
2. Try compiling the following program. Explain the error message that you get.
public class PrintTester

{

 public void print(int x)

 {

 System.out.println(x);

 }

 public static void main(String[] args)

 {

 int n = 13;

 print(13);

 }

}

Non-static methods can’t be called from static methods.

Activity 13-3

Outcome: Determine the scope of a variable.

1. Describe what is wrong in the following.
public class IDontWork

{

 private Circle c;

 private double a;

 public IDontWork ()

 {

 a = 0;

 Circle c = new Circle(5,2,9);

 }

 public void increase(Circle b)

 {

 if (b. area() == c.area())

 {

 int temp = 0;

 }

 else if (b.area() > c.area())

 {

 int temp = b.area();

 }

 else

 {

 int temp = c.area();

 }

 a += temp;

 }

 public boolean compare()

 {

 return b == c;

 }

}

There is no class Circle imported, but assume there is a class Circle and area is rounded as an int. "temp" declared inside of "if" and "else" scopes is not available outside of scope. Also b. area() in first condition will not compile due to white space.
In compare, there is no "b" variable defined. Also, c will always be null because in the constructor you are creating a local variable object c, and not using the instance field.
Activity 13-4

Outcome: Use packages to group related classes.

1. Java classes can be grouped together into packages. Packages provide scope as well as allowing you to organize your classes. In Java, there are several packages that contain classes that you have already used regularly including java.lang, java.util, and java.io. Write a small class with a simple main method in the package COMP 111.week13 using the following package statement: package COMP 111.week13; Now, rebuild and run your class. Do you notice anything different about the compilation process? If you were running the program manually at a prompt, what would you have to type?
Without the package, the compile process consists of

File saved

Compiling

Class compiled – no syntax errors

Note that the space between COMP and 111 needs to be removed, should be:
package COMP111.week13;
When adding the “package” statement, BlueJ says that the package must exist first and then removed the package statement.

If you create a package (Edit (New Package), the class can be added to package by adding line to file "package COMP111.week13;" When you try to compile the file (with the package statement as the first line), BlueJ asks if you want to move the files to the package.
To compile at the command line, cd to the COMP111.week13 directory and type:
javac COMP111.week13/<classname>.java
PAGE
3
Week 13 Learning Activities

